Welcome to Zou Lab

The Zou lab at UCSD studies development of neural circuits at molecular and cellular level. We are interested in how neurons in the nervous system form highly organized and precise connections to give rise to function. We believe studying neural circuit assembly at molecular and cellular level will reveal fundamental principles of how the complex connections of the entire nervous system are organized and elaborated. We also study how neural circuits degenerate and how adult central nervous system responds to injury. We believe by applying our knowledge of how the brain wires itself in development, we can contribute to the efforts of fighting neurological and psychiatric disorders and repairing injured nervous system to properly restore function.

pdf icon Yimin Zou's CV

Latest News

New icon Dec 4, 2013:

Onishi et al published new findings on signaling mechanisms that mediates growth cone turning. How growth cones detect small concentration differences of guidance cues for correct steering remains a long-standing puzzle. Commissural axons engage planar cell polarity (PCP) signaling components to turn anteriorly in a Wnt gradient after midline crossing. We found here that Frizzled3, a Wnt receptor, undergoes endocytosis via filopodia tips. Wnt5a increases Frizzled3 endocytosis, which correlates with filopodia elongation. We discovered an unexpected antagonism between Dishevelleds, which may function as a signal amplification mechanism in filopodia where PCP signaling is activated: Dishevelled2 blocks Dishevelled1-induced Frizzled3 hyperphosphorylation and membrane accumulation. A key component of apical-basal polarity (A-BP) signaling, aPKC, also inhibits Dishevelled1-induced Frizzled3 hyperphosphorylation. Celsr3, another PCP component, is required in commissural neurons for anterior turning. Frizzled3 hyperphosphorylation is increased in Celsr3 mutant mice, where PCP signaling is impaired, suggesting Frizzled3 hyperphosphorylation does correlate with loss of PCP signaling in vivo. Furthermore, we found that the small GTPase, Arf6, which is required for Frizzled3 endocytosis, is essential for Wnt-promoted outgrowth, highlighting the importance of Frizzled3 recycling in PCP signaling in growth cone guidance. In a Wnt5a gradient, more Frizzled3 endocytosis and activation of atypical protein kinase C was observed on the side of growth cones facing higher Wnt5a concentration, suggesting that spatially controlled Frizzled3 endocytosis is part of the key mechanism for growth cone steering.

Please click here to download the PDF file.

New icon Oct 7, 2013:

Anna Tury et al published their studies on changes of Wnt signaling components in an ALS mouse model. Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive paralysis due to the selective death of motor neurons of unknown causes. Increasing evidence indicates that Wnt signaling is altered in ALS. In this study, we focused on two non-canonical Wnt signaling components, atypical PKC (aPKC) and a Wnt receptor, Ryk, in a mouse model of ALS, SOD1 (G93A). aPKC mediates Wnt signaling to regulate growth cone guidance, axon differentiation and cell survival. Ryk is a Wnt repulsive receptor that regulates axon guidance and inhibits regeneration after spinal cord injury. aPKC expression was increased in motor neurons of the lumbar spinal cord in SOD1 (G93A) mice at different stages. Interestingly, aPKC was colocalized with SOD1 in motor neuron cell bodies and extracellular aggregates, and aPKC-containing extracellular aggregates increased with disease progression. Biochemical fractionation showed that aPKC protein level was increased in the detergent-insoluble protein fraction in SOD1 (G93A) mice at late stage but decreased in the detergent-soluble fraction at symptomatic stage. These results suggest that aPKC may be sequestered in SOD1 aggregates, impairing its ability to protect motor neurons from death. Ryk expression was also increased in the motor neurons and the white matter in the ventral lumbar spinal cord of mutant SOD1 mice with a peak at early stage. These observations indicate that Wnt/aPKC and Wnt/Ryk signaling are altered in SOD1 (G93A) mice, suggesting that changed Wnt signaling may contribute to neurodegeneration in ALS.

Please click here to download the PDF file.