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Abstract 

Background 

Recent techniques for tagging and visualizing single molecules in fixed or living organisms 
and cell lines have been revolutionizing our understanding of the spatial and temporal 
dynamics of fundamental biological processes. However, fluorescence microscopy images 
are often noisy, and it can be difficult to distinguish a fluorescently labeled single molecule 
from background speckle. 

Results 

We present a computational pipeline to distinguish the true signal of fluorescently labeled 
molecules from background fluorescence and noise. We test our technique using the 
challenging case of wide-field, epifluorescence microscope image stacks from single 
molecule fluorescence in situ experiments on nematode embryos where there can be 
substantial out-of-focus light and structured noise. The software recognizes and classifies 
individual mRNA spots by measuring several features of local intensity maxima and 
classifying them with a supervised random forest classifier. A key innovation of this software 
is that, by estimating the probability that each local maximum is a true spot in a statistically 
principled way, it makes it possible to estimate the error introduced by image classification. 
This can be used to assess the quality of the data and to estimate a confidence interval for the 
molecule count estimate, all of which are important for quantitative interpretations of the 
results of single-molecule experiments. 

Conclusions 

The software classifies spots in these images well, with >95% AUROC on realistic artificial 
data and outperforms other commonly used techniques on challenging real data. Its interval 



estimates provide a unique measure of the quality of an image and confidence in the 
classification. 
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Background 
In the last decade, a host of new technologies for tagging and visualizing individual 
molecules have yielded unprecedented quantitative insight into the spatial and temporal 
dynamics of fundamental biological processes as varied as ligand-receptor interactions at the 
cell surface [1], protein localization to synaptic junctions [2], and incomplete penetrance [3]. 
For example, the ability to visualize mRNA transcripts at the single molecule level without 
transgenic methods has led single-molecule fluorescence in situ hybridization (smFISH) to be 
widely used in studying gene expression in various organisms [3-14]. Recently this technique 
has been pushed to image up to 32 genes simultaneously with the promise of increasing this 
number still more [11]. These microscopy-based techniques rely primarily on fluorescent 
proteins or dyes that are bound to the molecule of interest and appear as a bright, roughly 
Gaussian spot. Background fluorescence can be considerable for some of these techniques, 
including smFISH [4,8], which makes distinguishing signal from noise an image processing 
challenge. However, a statistically principled, automated, and robust method for analyzing 
the images and classifying local intensity maxima as signal or noise, and estimating the 
accuracy and variability of these classifications has not been developed. This problem is 
acute since highly sensitive microscopy methods like smFISH are ideally suited for 
quantitatively studying stochastic variation in gene expression and other molecular processes 
within a population. 

We have extended a machine-learning pipeline for identifying, localizing, and counting 
biologically meaningful intensity maxima in 3D image stacks [15] both by improving the 
initial spot classification and, crucially, by providing a way to both estimate the quality of the 
data and generate an interval estimate for the number of molecules in it. We have tested it 
extensively on the challenging case of wide-field epifluorescence smFISH image stacks of 
nematode embryos where there can be substantial background fluorescence, and it also works 
on other samples like yeast and mammalian cell culture where the signal to noise ratio is 
more favorable. Unlike other commonly used methods [3,16,17], this software does not rely 
on arbitrary or user-defined parameters and cutoffs, but instead recognizes and classifies 
individual mRNA spots by measuring several features of local intensity maxima and 
classifying them with a supervised random forest classifier [18,19], It is a spot-centric 
approach as compared with approaches that involve thresholding an entire image [3,16,17]. 

Implementation 
Machine learning has been remarkably successful in a variety of classification and prediction 
tasks [20,21]. As with all supervised machine learning techniques, our pipeline trains a 
classifier based on a curated training set and then applies this classifier to new data. Our 
implementation includes a GUI to create the training set and a GUI for review and revision of 



the final classification (Figure 1). This review GUI also allows the user to retrain the 
classifier incorporating any corrections. (If a dataset only consists of a few image stacks, the 
GUIs used for either the training or review could be used to manually curate the images 
without the need for machine learning). The software currently uses the random-forest 
implementation provided in the MATLAB Statistics Toolbox [18]. 

Figure 1 GUIs in Aro. A. The training GUI. The left plot is a 16 × 16 square of pixels from 
the image on the right with local maxima (candidate spots) marked in blue. The user has the 
option to designate the maxima as signal, noise and add them to the training set or to skip 
them. B. The reviewing GUI. The left plot is a grid containing each identified local maximum 
ranked by its vote. Blue outlines mark signal spots; yellow boxes mark noise spots. The user 
has the option to correct classifications and retrain the classifier. The image on the right 
shows the context for the spot currently in focus (red outline). 

The first step for processing either a training image or a new image is to identify all local 
intensity maxima (spots) within an image stack and rank them in descending order by their 
background corrected intensities (Figure 2). These are then sequentially fit to 2D Gaussian 
surfaces until the mean squared error from the fits are persistently less than a cutoff value 
below which local maxima are empirically found never to be true signal spots. This cutoff is 
set to be extremely conservative because its function is simply to save time and memory by 
removing the majority of local maxima that represent noise in an image stack. The heart of 
the pipeline is a random forest classifier [19] – an ensemble of decision trees built from 
bootstrapped training sets – which has been shown to produce highly accurate classifications 
in a wide variety of applications [22-29]. 

Figure 2 Flowchart of the analysis pipeline with details of the automated steps. 

Our training GUI allows a user to view spots from a subset of image stacks in the dataset, 
generate a manually curated training set by classifying them as true signal spots or noise, and 
build a forest of decision trees based on the features calculated from each spot (Figure 1, 
Additional file 1). We find that a training set consisting of a few hundred positive and 
negative examples is sufficient for stable classification. For each tree, the algorithm selects a 
bootstrapped sample from this training data. Each split in the tree is based on a randomly 
chosen subset of the statistics, and the tree is grown according to pre-specified stopping 
criteria. The leaves can be, but are not necessarily, comprised of a single class. At the end of 
training, the user has a bagged ensemble of decision trees. 

To classify a new local maximum, the program runs the statistics for the putative spot 
through each tree to a terminal leaf. The proportion of training spots in this leaf that are 
manually classified as good can be used to estimate the probability that the new local 
maximum is a true signal spot. Although such probabilities are known to be inaccurate for 
single decision trees [30], using an ensemble of bagged trees improves the probability 
estimate, and so we average these proportions for a single candidate spot across all the trees 
in the forest to estimate a preliminary probability that it is a true spot [30-33]. However, these 
preliminary probabilities do not necessarily reflect the long-run frequency of a spot with 
particular features being classified as signal or noise [34-36]. 

In order to calibrate these preliminary probability estimates and transform them into more 
accurate probabilities, we use empirical data derived from thousands of training spot 
examples curated by different people. We bin this data by the preliminary probability 



estimate and then count the number of true spots in each bin. We fit a sigmoidal function 
[36,37] to the plot of the proportion of true spots against the probability estimate, and we use 
this function to transform the preliminary probability estimate of a local maxima being a true 
spot (derived from averaging across the decision trees) to an empirical probability estimate 
based on curated data (Figure 3, Additional file 2). This calibration curve is remarkably 
similar for different users and different datasets, and users can create their own calibration 
curves based on their own training sets. If the calibrated probability is greater than 50%, the 
local maximum is classified as a true spot. The user can then review and edit the 
classification using the review GUI and has the option to add any corrections to the training 
set, re-train the random forest, and re-run the classification (Figure 1). At any time the user 
can remake the random forest based on the augmented training set and rerun the 
classification. 

Figure 3 Calibration curves based on bagged probability estimates are robust to 
individual curation differences. A large corpus of manually curated training spots was 
binned by the bagged probability estimate derived from averaging the probability estimates 
for a local maximum from each tree in the ensemble. The calibration curves are constructed 
by fitting a sigmoidal function to the plot of bin centers (0 to 1 by steps of 0.1) versus the 
proportion of curated good spots in that bin. Calibration curves based on bagged probability 
estimates are less susceptible to curation differences between individuals than ones 
constructed by majority rules voting (Additional file 5). 

The calibrated probability reflects uncertainty in the classification of any particular spot, and, 
consequently, can be used to measure the uncertainty in the count of the number of true spots 
in an image. A local intensity maximum with a particular preliminary probability can be 
thought of as a sample of size 1 from the population of all candidate spots with the same 
preliminary probability, of which some fraction (the calibrated probability) are true spots. We 
would like to estimate a confidence interval for the count of true spots in an image. The width 
of the confidence interval is a measure of the quality of an image because it will largely be 
driven by the fraction of spots for which the user himself or herself would be ambivalent, 
based on how he or she has classified similar spots in the training set. 

To construct the interval estimate. we conduct a set of n Bernoulli trials with variable 
probabilities (also known as Poisson trials) [38] where n is the number of local maxima tested 
in an image. The variable probabilities (pk) are based on the calibrated probability estimates 
for each local maximum (indexed by k) (see Additional file 1 for details). The number of 
good outcomes (Xk = 1) in this set of Poisson trials is a simulated estimate for the number of 
transcripts in the image. 
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By rerunning this model 1000 times, we can derive a confidence interval for the total spot 
number (T). This interval will be tight for high quality images and will widen as image 
quality degrades. 

Estimating the variance of random forest and other bagged predictions is still an open 
problem, in part because the variance is comprised of both (a) sampling variance from 
training on a limited set of data and (b) Monte Carlo effects arising from a finite amount of 



bootstrapping [39-41]. Because we can empirically calibrate random forest probabilities in 
our classification task, we can take advantage of standard probability theory to construct an 
interval estimate. 

Results and discussion 
One key difficulty with evaluating image-based, molecule counting methods is that there is 
not an independent way to count the number of molecules in the specimen. For smFISH (as 
well as other techniques) it has been experimentally established [4,8] that, with the exception 
of transcriptional foci, spots in these images do represent single, fluorescently-labeled, 
diffraction-limited molecules. We can, however, use artificially generated data to investigate 
how well our method performs in the face of background noise. 

In order to avoid making arbitrary assumptions about the structure of background noise, we 
used three 3D image stacks from actual specimens without any transcripts as the background. 
The background therefore consists of both autofluorescence and any diffuse fluorescence due 
to unbound probes that were not removed by washing. To generate signal, we sprinkled point 
sources of a specified magnitude throughout a blank image stack of the same size as the 
background stack, convolved them with a point spread function based on typical microscopy 
parameters, added the background and signal stacks together, and then blurred them with a 
Gaussian filter. The spots in these images look very much like actual data (Additional files 3, 
4 and 5). 

To test our method, we used artificial images based on one background to construct random 
forests and evaluated the false positive and false negative rates for the images based on the 
other two backgrounds. The method performed robustly (Figure 4), with the area under the 
ROC curve well above 90% for realistic signal intensities and spot densities (Figure 4, 
Additional files 3, 4 and 5). The width of the confidence intervals increased at lower signal to 
noise levels, but otherwise was a fairly constant fraction of the total spot count . The software 
can reliably distinguish spots that touch, particularly if the local intensity maxima are 
separated by at least two intervening pixels. However, when the local mRNA density is too 
high, it is even impossible for humans to distinguish individual spots. Under these 
circumstances an intensity and regression-based approach to estimating transcript levels, 
while noisy, may be the only option [11,42]. 

Figure 4 The algorithm performs well even as data quality degrades. We tested the 
software on artificially constructed images of varying quality with realistic signal intensities, 
spot densities, and background noise based on real data. Spot density is measured by average 
distance of a pixel to an artificial spot in an image and is shown in the inset. Signal intensity 
on the x-axis is the average pixel intensity at the centers of the random spots minus the mean 
pixel intensity of the image divided by the standard deviation of the pixel intensities in the 
image. A sample of spots from the background 1 images were used to train the classifier. 

A few unsupervised algorithms have been used to automatically count the number of spots in 
smFISH [3,16,17,43-45]. Two of them [3,16] use a watershed method based on intensity to 
find a range of intensities over which the number of connected components in the image is 
insensitive to intensity thresholding. This number is taken as an estimate of the spot number. 
However, when the expression level is high, spots are often clustered, and out-of-focus light 
gives a higher local background that can vary across an image. Under these common 



circumstances these methods underestimate the true signal (often because neighboring spots 
are lumped together as one) while the method described here performs consistently well with 
few or many spots in the image, even if they touch (see above) (Figures 3 and 5, Additional 
files 3, 4 and 5). FISH-Quant [16] further analyzes the connected components, but its 
performance can be very sensitive to user-defined global parameters when the background 
signal is high (Figure 5). 

Figure 5 Comparison of spot identification and classification methods. A. The upper left 
is a maximum merge projection of an smFISH image from a C. elegans embryo for which 
488 signal spots were counted by hand (using the GUIs described here). A green rectangle 
highlights a section of the image. The other three images show spots identified in this green 
rectangle by FISH-Quant (upper right), the threshold-picking method (lower right), and the 
method described here (Aro: lower left). The number of signal spots identified in the embryo 
by the various methods are noted in the lower right of each image. Circles mark the locations 
of identified spots and are color coded by z-slice. Arrows point to representative areas 
depicting the tendency of threshold method to identify a large high intensity region 
comprised of several spots as a single spot. B. A plot of manually counted spot number (x-
axis) and estimated spot number (y-axis) by Aro, threshold-picking, and FISH-Quant across 
28 C. elegans embryos. Both FISH-Quant and threshold-picking tend to underestimate the 
true number of spots (particularly at higher spot counts for the threshold method) while our 
Aro machine learning method performs well across a range of spots numbers. Spearman 
correlations (r) between the true and estimated spot number are listed for each method. Both 
Aro and threshold-picking perform significantly better than random on this dataset. Interval 
estimates are depicted for Aro. Neither FISH-Quant nor threshold-picking provides a way to 
estimate error. 

Another approach [43-45] has the primary goal of spot localization and starts by identifying 
individual candidate spots after intensity thresholding a 2D maximum projection, correcting 
for local background, and fitting them to 2D Gaussians. It then removes purported duplicates 
and thresholds a measure of the intensity of the entire spot to distinguish signal from noise. 
Because our algorithm also starts directly from the local maxima, it also works robustly for 
images with high or inhomogeneous backgrounds. However, it uses the 3D image, not a 
maximum projection, and is able to resolve clustered spots. Furthermore, while our local-
maxima-centric approach uses a similar method for localization, its primary goal is robust 
classification without setting semi-arbitrary thresholds. The supervised learning process and 
the GUI allow the user to manually curate the classification of individual spots, and then feed 
these corrections back into the classification algorithm. This is particularly useful for low 
quality images, allowing the user to overrule the algorithm for spots on the boundary between 
signal and noise. 

Conclusions 
As the throughput of microscopy-based single-molecule techniques increases, robust image 
processing techniques will be ever more crucial. We present a machine-learning-based 
pipeline for identifying and classifying fluorescently labeled molecules in 3D image stacks 
that performs well under conditions where other algorithms fail. The software (called Aro 
Spot Finding Suite after Arothron hispidus) includes MATLAB [18] GUIs to generate the 
training set and review the classifications and a detailed manual with examples. The ability to 
infer biological meaning from a quantitative imaging experiment depends upon extracting 



reliable measurements from images. For single molecule imaging, our software uniquely 
provides a way to measure this reliability. 
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Additional files provided with this submission:

Additional file 1. Supplementary text. Additional information about the statistics used in the classifier, the construction of
the artificial data, and the user experience (131kb)
http://www.biomedcentral.com/content/supplementary/s12859-015-0534-z-s1.pdf
Additional file 2. Figure S4. Calibration curves based on majority rules classification are not as robust to individual curation
differences as those based on bagged probability estimates. As in Figure 3, a corpus of manually curated spots was used to
construct calibration curves. Instead of the average probability across trees (as in Figure 3), the initial probability estimate (x-
axis) is the fraction of trees classifying a local maximum as a spot (105kb)
http://www.biomedcentral.com/content/supplementary/s12859-015-0534-z-s2.zip
Additional file 3. Figure S1. Artificial data used to test the method. Maximum merge images of the image stacks
constructed to test the method. One of the three embryo background used for the artificial data. The point source intensity
decreases from left to right and density increases from top to bottom. The density is measured by the mean distance of a
pixel to an artificial spot center. The signal to noise metric (numbers in white to the bottom left of each embryo) is the
average pixel intensity at the centers of these artificial spots minus the mean pixel intensity of the image divided by the
standard deviation of the pixel intensities in the image. (see Additional file 1 for details of construction) (6774kb)
http://www.biomedcentral.com/content/supplementary/s12859-015-0534-z-s3.zip
Additional file 4. Figure S2. The second of the three embryo background used for the artificial data. The description is the
same as for Additional file 2 (5742kb)
http://www.biomedcentral.com/content/supplementary/s12859-015-0534-z-s4.zip
Additional file 5. Figure S3. The third of the three embryo background used for the artificial data. The description is the
same as for Additional file 2 (7857kb)
http://www.biomedcentral.com/content/supplementary/s12859-015-0534-z-s5.zip
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