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Human environmental modifications have outpaced honey

bees’ ability to evolve adaptive regulation of foraging tactics,

possibly including a tactic associated with extreme food

shortage, honey robbing. Honey robbing is a high risk, high

reward, and understudied honey bee tactic whereby workers

attack and often kill neighboring colonies to steal honey.

Humans have exacerbated the conditions that provoke such

robbing and its consequences. We describe robbing as an

individual-level and colony-level behavioral syndrome,

implicating worker bees specialized for foraging, food

processing, and defense. We discuss how colony signaling

mechanisms could regulate this syndrome and then explore the

ecological underpinnings of robbing—highlighting its unusual

prevalence in the commonly managed Apis mellifera and

outlining the conditions that provoke robbing. We advocate for

studies that identify the cues that modulate this robbing

syndrome. Additionally, studies that apply behavioral ecology

modeling approaches to generate testable predictions about

robbing could clarify basic bee biology and have practical

implications for colony management.
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Human agricultural practices impact honey
bee foraging tactics like robbing
Human agricultural practices have diverse and complex

implications for honey bee behavior, health, and
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beekeeping costs. Colony management, presently a

requirement for successful pollination of many cash crops

worldwide, is itself a source of honey bee stress. For

example, during crop bloom in intensive agricultural

landscapes, honey bees are densely packed into small

areas, leading to nutritional stress from competition and

lack of floral diversity [1]. The world-wide transport of

Apis mellifera has introduced novel pathogens and invasive

parasites, most notably the Varroa mite, which has deci-

mated colony survivorship and productivity in most

regions where it has taken hold. In addition to beekeep-

ing practices, agricultural land use generally has large

effects on bee nutrition. Crop bloom results in boom-and-

bust periods of resource availability, and honey bee

colony health strongly tracks these feast-famine cycles

[2�]. In the U.S.A., a general period of nectar dearth arises

in the mid-late summer, in part from the loss of native

flowering prairie lands that naturally bloom at this time

[3]. The replacement of natural floral communities with

crop and grazing lands can increase competition for food

among bee species, or alternatively, decrease competition

by eliminating natural refuges and wild bees altogether

[4]. Changing climate and weather patterns may further

limit nectar abundance [5], harming bee populations [6].

Honey bees, therefore, face diverse stressors in human

agricultural environments, including the complex and

significant effects of floral resource limitation.

Honey bees forage for kilometers across the landscape,

and they have sophisticated adaptations that allow them

to take advantage of sparse, ephemeral floral resources

[7]. During extreme resource scarcity, they can deploy a

comparably extreme foraging tactic known as honey

robbing. Robbing colonies invade neighboring colonies

and collect honey stores, sometimes numbering in the

kilograms. Because honey is processed, concentrated

nectar collected from millions of different flowers, bee

colonies provide a large, diverse, and valuable food

resource. However, robbing is relatively rare under natu-

ral conditions because it is a high-risk tactic, in which

foragers attack, fight, and kill members of the ‘victim’

colony [8]. This places unique demands on the robbing

colony, which must mount an offense, but also collect and

store an unusually large quantity of food. Moreover,

victim colonies can be infected with transmissible
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diseases and parasites, weakening them and reducing

their defensive behavior, which simultaneously makes

them more attractive and more costly robbing targets [9–

11,12�,13]. Because robbing can result in widespread

colony mortality, it is understudied, and it remains

unclear whether or not colonies adaptively deploy this

foraging tactic under the extreme conditions presented by

agricultural practices. For example, foraging adaptations

like nestmate recruitment using the waggle dance may

actually work against colony productivity in extreme

conditions of resource scarcity [14�]. Thus, there is evi-

dence for maladaptive expression of colony level foraging

tactics in highly modified environments. Honey robbing,

which integrates nutritional stress with other disease and

mortality costs, may be one such tactic.

Here, we provide an overview of robbing in honey bees,

focusing on A. mellifera, the commonly managed western

honey bee. We describe honey robbing as a complex

behavioral syndrome at individual and colony levels,

and we discuss how well-established honey bee commu-

nication mechanisms may operate in a robbing context.

We explore the scope of this foraging tactic in other Apis
species. Finally, we discuss the ecological contexts that

promote robbing, and consider how humans have altered

robbing risks and benefits. Robbing may be a sophisti-

cated colony-level foraging tactic that becomes dysregu-

lated under human-altered conditions. As a result, rob-

bing may be triggered in maladaptive scenarios,

ultimately increasing colony losses.

Honey robbing as a behavioral syndrome
In social insects, behavioral syndromes (suites of corre-

lated behavioral traits), occur at both individual and

colony levels. This behavioral organization is particularly

complex in honey bees because of their large colony sizes

(20 000–60 000 worker bees). Colony foraging regulation

is sophisticated: tactics change in response to colony

demography, size, and nutritional deficits [15,16], the

quality, quantity, and proximity of available resources

[17,18], and abiotic factors including temperature [19]. To

adjust food collection, colonies can deploy different ratios

of nectar and pollen foraging specialists [20], and individ-

uals can adjust their foraging trip frequency, duration, and

distance, as well as their use of social information about

resource quality and location (the famous dance language

[21], which is likely also involved in robbing).

At the individual level, little is known about traits that

characterize robbing foragers. Foragers are divided into

individuals that specialize on resin, nectar, pollen, or

water collection. The latter three specializations are

correlated with sensitivity to sugar concentration in a

logical manner (nectar, pollen, and water foragers have

respectively low, medium, and high sensitivities [22]).

This logic implies that robbing bees could have unusually

low sensitivity and thus high sugar response thresholds.
www.sciencedirect.com 
Robbers are unlikely to be a distinct foraging specializa-

tion given the seasonal and opportunistic nature of the

tactic. However, there is some evidence that they may

consistently possess other correlated traits. For example,

even when kept safely in the lab, robbers have decreased

longevity compared to non-robbing foragers, a pattern

that lessens the potential costs to the riskier tactic [10].

There is also some evidence that robbing foragers, even

without engaging in fights, are unusually aggressive [23�],
a potentially adaptive trait since aggression may be

required to overwhelm victim colony defenses.

At thecolonylevel, robbingischaracterizedbyaconspicuous

increaseinforagingactivity,requiringaconcomitantincrease

in food storing abilities. Nectar foragers do not directly store

their nectar load, but instead transfer it to receiver bees. The

lengthoftimeaforagerwaitsforareceiveraffectsthespeedat

whichthatforagerleavesforanothertrip.Duringrobbing,the

rapid increase in foraging trip rate [23�] likely requires rapid,

increased recruitment of receiver bees [24], and possibly a

change in the feedback mechanism that regulates foraging

activity (discussed below). The robbing colony’s defensive

specialists also have been implicated in the syndrome [23�].
Guard bees are specialists who defend against invading

robber honey bees. Guards smell odors on incoming foragers

and chase away non-nestmates [25]. Unsurprisingly,

experiencing robber intrusion results in increased victim

colony guard numbers and higher rates of non-nestmate

rejection [26,27]. However, guards from robbing colonies

that have not experienced such intrusions can also elevate

their defensiveness, even towards their own foragers [23�].
The causes and consequences of this shift are largely

unknown,althoughitsuggestsacorrelationbetweenrobbing

activity and invasion risk (Figure 1).

Colony signaling mechanisms and the
regulation of robbing
Honey bees use social information and sophisticated

communication mechanisms to modulate foraging behav-

ior. Foragers perform waggle dances to signal the pres-

ence of good food resources [21], likely including a nest

that can be robbed. In fact, the classic artificial sugar

feeders used by researchers to decode the characteristics

of the waggle dance more closely simulate a nest than a

floral resource because flowers do not offer concentrated

nectar ad libitum. Artificial feeders can provide very large

quantities of high-concentration sugar solution that may

simulate nest robbing [28�]. They also elicit guarding and

patrolling (robbing behaviors), and attract hundreds of

foragers to a single location [29]. Managed honey bee

colonies are routinely fed during times of food dearth with

artificial feeders containing sugar solutions, a human

manipulation that may increase robbing, particularly

given the lack of other food sources.

Using rich ‘robbable’ feeders placed outside the nest,

researchers have identified two signals, tremble dancing
Current Opinion in Insect Science 2021, 45:84–90



86 Behavioural ecology

Figure 1
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Mechanisms that co-regulate aggression and foraging in a robbing context. Robbing colonies display a behavioral syndrome characterized by

simultaneous increases in foraging activity and aggression [23�,27,44�]. Because both foraging and aggression are high-energy behaviors [62,63],

this co-regulation is surprising [64], and likely the result of interacting processes at the individual, colony, and landscape levels that are also under

human influence. At the landscape level, floral resources alter competition among colonies [27,44�], while colony density can increase aggressive

interactions due to processes like worker drift or increased availability of robbing targets. At the colony level, the decision to rob requires both

increased aggression to fight bees from the victim colony and increased foraging activity to exploit the high-value food resource [23�]. Risks

associated with robbing cause colonies to target ‘winnable’ small and often diseased colonies [10,12�,13]. The lost bees and time due to robbing

pose additional costs that may modulate both foraging and aggression. Such costs may only appear over a long-term timeframe. At the individual

level, studies document seasonal fluctuations in biogenic amines, including a peak in brain serotonin and dopamine levels during the robbing

season [57]. These biogenic amines modulate honey bee aggression [55]. Seasonal shifts could reflect increased aggressive interactions with

neighboring colonies, or a correlated response to floral resource scarcity that prepares colonies for defense. Bioenergetics are important for both

foraging and aggression in honey bees, due in part to the high metabolic costs of flight [65]. However, brain metabolic dynamics, which are

modulated by biogenic amines, distinguish foraging and aggressive specialists [59,66]. It is unclear how this neural mechanism is altered in the

context of robbing.
and stop signaling, that regulate food collection and

storage processes relevant to robbing. During a massive

increase in nectar inflow (which could occur during rob-

bing), there are insufficient receiver bees to collect food

from incoming foragers. Forager wait time increases, and

in response, they shift from waggle dancing to tremble

dancing [30]. Tremble dancing may stimulate bees to

engage in food receiving because the number of receivers

increases after tremble dancing rises. This regulation is

elegant since foragers cease recruiting new foragers to a

food resource when the colony is unable to process it.

New receiver recruitment can happen rapidly [31], but it

is unknown whether this typical mechanism is sufficient

to accommodate the influx of honey during robbing.

Robbing could trigger an additional signaling mechanism

associated with resource competition. When foragers

overwhelm an artificial feeder, they experience over-

crowding [32] and fight with foragers from competing

colonies [28�]. In this situation, foragers return to the nest

and produce brief vibratory pulses called stop signals,

directed at other waggle dancers recruiting for the same
Current Opinion in Insect Science 2021, 45:84–90 
overwhelmed resource. These signals cause foragers to

stop dancing [28�]. Unlike the passive process by which

tremble dancing supplants waggle dancing, the stop

signal provides negative feedback to counter the positive

recruitment effects of waggle dancing. The result is more

rapidly reduced recruitment and a faster foraging behav-

ioral shift at the colony level.

Different signals may allow colonies to weigh robbing

risks and benefits during its incipient stages and abandon

situations that are overly risky. For example, foragers that

are not attacked at an overwhelmed feeder continue to

waggle dance and recruit, while individuals who are

attacked at a rich feeder (as could occur during the initial

stages of robbing when a victim colony defends itself)

produce stop signals and tremble dances [28�]. This case

suggests a broader role for the tremble dance as a catalyst

for reallocating colony labor [33]. Agent-based modeling

of robbing suggests that stop signaling allows a colony to

more efficiently stop robbing when the robbed colony can

mount an effective defense [34]. Thus, stop signals can

theoretically inform a conservative robbing decision-
www.sciencedirect.com
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making process. Such a process predicts that colonies

preferentially attack weak colonies (which is supported

by empirical evidence) and quickly call off attacks when

strong colonies mount an effective defense [34], as sup-

ported by evidence of abandoned robbing attempts [8].

Robbing in different honey bee species
The existence of the defensive guard specialist whose

effort is directly modulated by conspecific robber intru-

sion suggests that robbing occurs outside of the managed

colony context (i.e., between non-managed Apis mellifera
colonies). However, among the different Apis species, the

most common observations of robbing come from apiar-

ies, illustrating a potential impact of human manipulation.

Colony management conditions may simultaneously

increase passive worker drift and provoke non-nestmate

aggression when resources become scarce, or when a

robbing target presents itself. In A. mellifera, for example,

managed colonies rob both within and among apiaries

[12�], and based on patterns of disease transmission,

evidence of density-dependent robbing exists at the

landscape, not just apiary, scale [35].

All Apis species create nests with highly concentrated

resources that are attractive to interspecifics [36]. Apis
florea [37], an open-nesting species, can rob A. mellifera
colonies, and, surprisingly, given the generally smaller

sizes of A. florea colonies and workers, can overcome A.
mellifera [38]. Apis cerana (a cavity nesting species) is

robbed by A. mellifera and vice versa, with A. mellifera
possessing the competitive advantage [39]. Similarly, the

open nesting Apis dorsata [37] can rob A. cerana [39], and

A. cerana and Apis koshevnikovi (both cavity nesters) have

been observed landing on A. dorsata nests to rob them

[11].

Although robbing between species is broadly supported, it is

less clear how common intraspecific robbing is for feral and

wild honey bees. Compared to A. mellifera, there is little

evidence of robbing, and surprisingly little intraspecific

aggression in A. florea, A. andreniformis (an open nester), A.
dorsata, and A. cerana [40]. However, A. cerana robbing and

fighting were observed in managed colonies during honey

harvesting[40], justaswithA.mellifera.Robbingobservations
may be more frequent in apiaries because they are closely

monitored, but the association with honey harvesting sug-

gests that increased colony densities and honey availability

due to management practices could increase robbing.

A. dorsata nest in clusters that could facilitate robbing.

However, genetic analyses found only about 1.4% worker

drift (defined as passive movement of workers to a non-

natal colony) between colonies [41], suggesting adapta-

tions to prevent drift, non-nestmate intrusion, or both. A.
dorsata are relatively docile towards conspecifics, but they

do become more defensive towards non-nestmates during

the migratory season when a new nest has settled in their
www.sciencedirect.com 
vicinity. Actual robbing is still rarely observed [42]. Inter-

estingly, managed A. mellifera colonies kept at a similar

density show a drift rate that is 35-fold higher. Apis
mellifera colonies naturally occur at much lower densities

than the density of colonies found in most apiaries, which

may have weakened natural selection against worker drift

[43].

In addition to passive drift, robbing is a key mechanism

for mite and virus transfer among colonies [12�]. The

prevalence of both stressors is correlated with landscape

colony density, suggesting interactions among colonies

from widely spaced apiaries. Forfert et al. [35] found a

positive correlation between density and pathogen prev-

alence, comparing a minimum density of 0.32 colonies per

km2 to a maximum density of 1.4 colonies per

km2. Honey bee colonies are often managed at densities

well above this maximum. In general, species variation in

robbing could result from differences in the quantity of

stored resources, nesting habits, dissimilarities in the risks

and benefits of intraspecific aggression, management

practices, or a combination of these factors.

Ecological conditions that provoke honey
robbing
Floral resource limitation, specifically nectar scarcity,

seems to be the main ecological condition that promotes

robbing and can be exacerbated by a lack of natural floral

resources in landscapes altered by humans. Nectar scar-

city can be assessed by measuring visitation to sugar

feeders placed in the vicinity of honey bee colonies. As

floral resources dwindle, bees visit and collect food from

feeders with progressively lower sugar concentrations

[27,44�,45]. Although there is substantial landscape-level

variation in floral resource abundance, in most moist

temperate areas, nectar scarcity shows a predictable sea-

sonal pattern that tracks robbing activity. Floral resources

decline substantially in late summer [46]. Simulta-

neously, other factors compound the effects of food

shortage, including increased competition from other

bee species at their peak population abundance [47],

heightened pressure to accumulate sufficient honey for

the winter [48,49], and declining temperatures, which

make nectar processing more energetically costly [50].

Further studies across a range of climate regions are

needed to determine how robbing risk is predicted by

any one of these seasonal changes. For example, in parts

of Florida dominated by citrus, robbing risk increases

after the end of the citrus bloom, even though this decline

in floral resources occurs in early spring, removing the

other seasonal pressures associated with the approach of

winter [27].

Conclusions
Robbing is a sophisticated foraging tactic that carries great

risks to honey bee colonies in human altered landscapes.

Improved understanding of the mechanisms underlying
Current Opinion in Insect Science 2021, 45:84–90
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robbing is needed to understand its impacts and regula-

tion. For example, the cues driving the simultaneous

increase in foraging activity and aggression during rob-

bing are unclear [23�]. Guards could be confused by

changes in nestmate odors that result from bees entering

another nest. Guards may also respond to the heightened

aggression displayed by robbing foragers, even though

they are nestmates. Minor intrusion attempts by neigh-

boring colonies could also cause these changes [26], and

eventually escalate to robbing. If so, the use of migratory

colonies for pollination could exacerbate robbing when

colonies are set out closely spaced and bees begin to

orient themselves in a new location. Other costs like

pathogen and parasite transmission may be higher in high

density conditions, and the impact of robbing in these

contexts remains to be considered [51,52]. For bee-

keepers, the costs associated with robbing-related mor-

tality and disease risk are compensated, to a degree, by

the financial gains from pollination services. The state of

this fragile balance could substantially impact the future

of commercial beekeeping [53,54].

If colonies use floral resource abundance or other sea-

sonal cues to anticipate robbing threats, they may pro-

actively shift their defensiveness over the season. Food

scarcity and defensive behaviors are correlated and peak

in the fall when robbing is common, even without

evidence of an acute robbing event [44�]. Interestingly,

brain titers of aggression-related biogenic amines, sero-

tonin and dopamine [55,56], peak during August and

September [57] when robbing peaks, but it is not known

whether this variation arises from abiotic cues or robbing

experience. Simultaneous expression of two high energy

behaviors, aggression and foraging activity, is difficult to

sustain, suggesting robbing has unknown colony level

energetic consequences that may manifest over time.

For individual robbers, it is unclear how foragers accom-

modate an increase in aggression, as these two pheno-

types are typically mutually exclusive, including at the

level of neural regulation [58,59]. Future work should

address how the colony level features of the robbing

syndrome are regulated by existing signals, and how

robbing related behaviors are regulated at the individual

level.

Determining the physiological and ecological mecha-

nisms that modulate robbing (Figure 1) should improve

our understanding of robbing and its consequences. For

example, the cost of fighting over rich food sources is not

necessarily, as might be expected, a mortality cost, but

rather a cost of lost time. In the case of two stingless bee

species, time spent fighting for an unwinnable resource

takes away from time spent foraging for other resources,

and thus mechanisms have evolved that allow species to

avoid time-wasting combat [60]. A similar decision may

be made by robbing honey bees. Is it better to rob or to

forage for floral resources? It may also be illuminating to
Current Opinion in Insect Science 2021, 45:84–90 
integrate optimal foraging theory with game theory, an

approach commonly used in studies of facultative klep-

toparasitism (selective stealing of food resources [61�]).
Such modeling suggests that food stealing is affected by

multiple factors, including fighting, but it is particularly

influenced by population density (in our case, the number

of colonies in each area, [35]), a factor that could be

adjusted during agricultural pollination. In addition, deci-

sion analysis modeling could be used to better understand

factors, such as the time costs and the probability of

winning a rich resource, that a robbing or aggressive

colony weighs [60]. In general, such modeling would

be useful for understanding how collectives adapt to

dynamic ecological conditions. Robbing, therefore, pro-

vides a case-study in the precariousness of social coordi-

nation in the face of accumulating stressors, particularly

those exacerbated by human actions. In addition to its

direct impacts on colony health, human intervention may

result in maladaptive foraging tactics that lead to colony

losses.
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