Preliminary analysis shows that feral and managed honey bees in Southern California have similar levels of viral pathogens

Amy Geffre, Dillon Travis, Joshua Kohn & James Nieh

To cite this article: Amy Geffre, Dillon Travis, Joshua Kohn & James Nieh (2021): Preliminary analysis shows that feral and managed honey bees in Southern California have similar levels of viral pathogens, Journal of Apicultural Research, DOI: 10.1080/00218839.2021.2001209

To link to this article: https://doi.org/10.1080/00218839.2021.2001209

Published online: 09 Dec 2021.
Preliminary analysis shows that feral and managed honey bees in Southern California have similar levels of viral pathogens

Amy Geffre, Dillon Travis, Joshua Kohn and James Nieh
Division of Biological Sciences, Section of Ecology, Behavior, and Evolution, University of California San Diego, La Jolla, CA, USA

ABSTRACT
Bees provide critical pollination services but are threatened by multiple stressors, including viral pathogens. The role of feral honey bees (FHB) in spreading viral pathogens is of increasing interest. We provide preliminary evidence that FHB colonies may act as persistent reservoirs of acute bee paralysis virus (ABPV), black queen cell virus (BQCV), and deformed wing virus (DWV) in southern California. Additionally, though FHB are not treated for diseases or parasites, they harbor similar pathogen loads to managed honey bees (MHB), emphasizing the need for future studies describing how FHB mitigate viral pathogen stress.

ARTICLE HISTORY
Received 18 May 2021
Accepted 28 September 2021

KEYWORDS
Feral honey bees; deformed wing virus; acute bee paralysis virus; black queen cell virus; pollinator community

MHB face mounting pathogen stress (Meixner & Le Conte, 2016). To reduce infection, MHB colonies require intensive treatments, particularly to diminish the prevalence of mite-vectored viral pathogens. However, FHB are highly successful throughout southern California without human intervention, suggesting an increased capacity to mitigate pathogen stress. Here we take a key first step to understanding the connections between honey bee-associated viruses (HBAV) in FHB and MHB in southern California by quantifying the abundance of common viral pathogens: deformed wing virus (DWV), black queen cell virus (BQCV), and acute bee paralysis virus (ABPV) among MHB and FHB throughout a year.

We collected foragers from the entrances of 3 FHB and 3 MHB colonies from San Diego and Riverside counties during September, October, November of 2019, and April, June, July, and August of 2020. MHB colonies were managed according to Honey Bee Health Coalition best practices (Honey Bee Health Coalition, 2019). We only sampled FHB by regular observation to have occupied a nesting site for at least a year by regular observation. Colonies were located at least 8 km apart to minimize forager overlap. Bees from each colony were collected into a single 15 mL centrifuge tube, euthanized on dry ice, and stored at −70 °F. To avoid contamination between sites, we used disposable gloves while collecting, and disinfected nets with 10% bleach between sites. All MHB were sampled with the permission of apiary owners. FHB colonies were all on public land.

Total RNA was extracted from whole individual bees using TRizol™ Reagent (Life Technologies). The absolute number of viral genome equivalents (VGE) was determined via one-step qRT-PCR (iTaq™ Universal SYBR® Green One-Step; CFX Maestro platform (BioRad)), using the protocol and USR standard curve described in Carrillo-Tripp et al. (2016). Viral titers for sites and bee types were compared via repeated-measures general linear model in RStudio (R Core Team, 2019; RStudio Team, 2020), using the lme4 (Bates et al., 2015), and lmerTest (Kuznetsova et al., 2017) packages. Bee type and date of the collection were fixed effects. The site was a random effect. To improve model fit, we log-transformed VGE. Figures were produced using ggplot2 (Wickham, 2016). Data and analysis code are available via Zenodo.

Average viral titers in our colonies fluctuated over the collection dates (Table 1), as is typical (Antúnez et al., 2015), except ABPV, which was present only in low titers, often below the level assumed to represent true infection (Dolezal et al., 2016). None of the measured viruses showed significantly different titers between FHB and MHB during any sampling period (Table 1, Figure 1).

Similar levels of HBAV in FHB and MHB in southern California suggest that both bee types are sources of HBAV for the pollinator community. Additionally, since FHB do not rely on management to mitigate pathogen stress, they may have means to combat viral stressors that MHB do not. In Pennsylvania, Hinshaw et al. (2021) also found similar, and occasionally higher, HBAV levels in FHB. The fact that FHB across North America appear to be
reservoirs of viruses harmful to MHB and other pollinators means they likely play important roles in the pathogen dynamics among pollinator communities (McMahon et al., 2015).

In southern California, genomic admixture with
A. mellifera scutellata (Cridland et al., 2018) in FHB populations may play a role in mitigating pathogen stress, as suggested by Tarpy (2003), and Meixner et al. (2010). Behaviors often attributed to admixture with A.m. scutellata, including anti-Varroa hygienic and grooming behaviors, increased swarming frequency, smaller colony sizes, and heightened defensiveness (Carr et al., 2020; Nganso et al., 2017; Schneider et al., 2004), may help ward off diseases. However, neither increased genetic diversity nor African ancestry appears necessary; increased diversity within South Carolinian FHB was correlated with immune response, though FHB showed lower genetic diversity than MHB (López-Uribe et al., 2017). Behaviors associated with Africanization are found in FHB in the absence of A.m. scutellata ancestry (Locke, 2016; Loftus et al., 2016; Seeley et al., 2015). This suggests that feralization itself may select for beneficial adaptations to mitigate disease. Thus, FHB may be both important sources of pathogens among pollinators, and potential resources for understanding pathogen mitigation in honey bees.

Table 1. Repeated measures regression of viral titers in FHB and MHB.

<table>
<thead>
<tr>
<th>Virus</th>
<th>Effect</th>
<th>Estimate (β)</th>
<th>Standard Error</th>
<th>DF</th>
<th>t-value</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABPV</td>
<td>Intercept</td>
<td>24.120</td>
<td>12.980</td>
<td>248.400</td>
<td>1.858</td>
<td>0.064</td>
</tr>
<tr>
<td></td>
<td>Bee Type</td>
<td>−20.230</td>
<td>18.250</td>
<td>248.400</td>
<td>−1.108</td>
<td>0.269</td>
</tr>
<tr>
<td></td>
<td>Date</td>
<td>−0.001</td>
<td>0.001</td>
<td>248.400</td>
<td>−1.654</td>
<td>0.099</td>
</tr>
<tr>
<td></td>
<td>Type x Date</td>
<td>0.001</td>
<td>0.001</td>
<td>248.300</td>
<td>1.114</td>
<td>0.267</td>
</tr>
<tr>
<td>BQCV</td>
<td>Intercept</td>
<td>−22.840</td>
<td>10.010</td>
<td>248.500</td>
<td>−2.281</td>
<td>0.023</td>
</tr>
<tr>
<td></td>
<td>Bee Type</td>
<td>3.635</td>
<td>14.070</td>
<td>248.500</td>
<td>0.258</td>
<td>0.796</td>
</tr>
<tr>
<td></td>
<td>Date</td>
<td>0.002</td>
<td>0.001</td>
<td>248.100</td>
<td>2.773</td>
<td>0.006</td>
</tr>
<tr>
<td></td>
<td>Type x Date</td>
<td>0.000</td>
<td>0.001</td>
<td>248.100</td>
<td>−0.281</td>
<td>0.779</td>
</tr>
<tr>
<td>DWV</td>
<td>Intercept</td>
<td>44.250</td>
<td>16.780</td>
<td>248.400</td>
<td>2.637</td>
<td>0.009</td>
</tr>
<tr>
<td></td>
<td>Bee Type</td>
<td>44.010</td>
<td>23.610</td>
<td>248.400</td>
<td>1.864</td>
<td>0.064</td>
</tr>
<tr>
<td></td>
<td>Date</td>
<td>−0.002</td>
<td>0.001</td>
<td>248.400</td>
<td>−2.326</td>
<td>0.021</td>
</tr>
<tr>
<td></td>
<td>Type x Date</td>
<td>0.002</td>
<td>0.001</td>
<td>248.400</td>
<td>1.869</td>
<td>0.063</td>
</tr>
</tbody>
</table>

Model: \[\log(\text{Viral genome equivalents of target virus}) \sim \text{Bee type} + \text{Date} + (\text{Bee type} \times \text{Date}) + (1|\text{Site}) \]

Figure 1. Infection intensity of feral (purple) and managed (green) honey bees. Error bars indicate standard deviations (n = 5 bees per colony, except for November, where n = 3 bees per colony).
Disclosure statement

Authors declare no potential competing interests.

Funding

This work was supported by University of California Natural Reserve System; University of California Academic Senate, San Diego; University of California, San Diego.

ORCID

Amy Geffre http://orcid.org/0000-0001-8734-8058

References

