Wnt signaling in axon guidance

Yimin Zou

Department of Neurobiology, Pharmacology and Physiology, The University of Chicago, Chicago, IL 60637, USA

Recent studies have identified Wnt proteins as conserved axon guidance molecules in vertebrates and invertebrates. Wnt proteins are a large family of diffusible factors that play several important roles, both in embryonic development and in adult function. The signaling mechanisms of Wnt proteins are complex and, because Wnts are newly discovered as axon guidance cues, little is known about how Wnt signaling controls the direction of growth cone navigation—a process that is crucial in development of the nervous system. This review summarizes recent work on the role of Wnts in axon guidance and discusses the possible signaling mechanisms involved in growth cone guidance. Understanding how Wnts regulate axon wiring will not only help us to understand how the nervous system is connected but also provide possible tools for axon regeneration.

Wnt family signaling proteins play several important roles in development and in function of the mature animal. It is well established that they are crucial in developmental processes such as axis patterning, cell fate specification and proliferation. In recent years, evidence suggesting that Wnt proteins also play important roles in axon development during nervous system formation has been accumulating. Wnt proteins were first found to be able to remodel axons and act as retrograde signals during synapse formation in the cerebellum [1,2]. More recent work showed that Wnt proteins are conserved axon guidance molecules [3,4]. Because several reviews already covered Wnts in axon remodeling and synaptogenesis [5,6], this review focuses on Wnts in axon guidance. Although much work has been done on Wnt signaling mechanisms [7–13], currently virtually nothing is known about the signal transduction pathways that lead to directed growth of axons; this promises to be an active area of investigation in the coming years. This review will briefly mention the current status of Wnt signaling studies and then explore the mechanisms that might be relevant to growth cone guidance.

Axon pathfinding: Wnts are bifunctional axon guidance molecules

The first hint that Wnt proteins might be regulators of axon development came from the observation that DWnt3 (now named DWnt5) protein was found on axons of the ladder-like ventral nerve cord of the fly embryonic CNS [14]. Loss-of-function data were not available because of a lack of mutants at the time. Ubiquitous overexpression of DWnt3 resulted in essentially wild-type cuticle morphology and engrailed gene expression domains during early segmentation (which is controlled by the Wingless gene), but at a later stage the overexpression caused severe disruption of CNS commissural axon tracts, such as reduced width of axon bundles crossing the ventral midline in the ventral nerve cord [14]. Although this study suggested that DWnt3 has a function distinct from the segment polarity gene Wingless, the role of DWnt3 in axons was not clear at the time. Several possible explanations were suggested to account for the defects caused by overexpression, including overproduction of the protein, inappropriate timing of expression, and changes in the fates of subsets of cells such as glia. In a separate line of research, an atypical receptor-tyrosine-kinase-type protein, Derailed, was shown to mediate a repulsive guidance mechanism at the midline controlling the pathway selection of commissural axons (i.e. the decision of which commissure to cross). An elegant study identified a genetic interaction of Derailed with DWnt5, and subsequent biochemical studies suggested that Derailed protein is a receptor for DWnt5 and mediates the repulsive function of DWnt5 in controlling pathway selection in the ventral nerve cord [3,15,16]. An independent study seeking guidance cues along the anterior–posterior (A–P) axis of the vertebrate CNS identified Wnt proteins as attractive cues for A–P guidance of spinal cord commissural axons after midline crossing [4]. Using a series of in vitro explant assays, this study provided direct evidence that Wnt proteins convey directional information for growth cone pathfinding: A Wnt receptor, Frizzled3, was implicated in mediating the attractive guidance function of Wnt in commissural axon pathfinding. Commisural axons ignore Wnt proteins until they reach the midline, and become attracted to Wnts immediately after midline crossing (Figure 1).

Wnt signaling: which pathway (or pathways) regulates axon guidance?

Wnts are secreted, cysteine-rich proteins that are key players in several aspects of development, including axis formation, patterning, cell fate determination, proliferation, tissue polarity, morphogenesis, cell motility and synaptogenesis [7–11]. Wnt proteins bind to a large family of seven-transmembrane-domain proteins, the Frizzled proteins. Although recent studies converge on the conclusion that Wnt proteins are axon guidance molecules, very little is known about the Wnt signaling mechanisms in growth cone guidance. This is a very intriguing problem, not least because of the many roles played by Wnt family signaling proteins in developmental processes.
Wnt signaling through glycogen synthase kinase-3β (GSK-3β) has been implicated in axon remodeling before synapse formation, presumably through microtubule remodeling by regulating phosphorylation of microtubule-associated protein (MAP)1B [17,18]. This was proposed to be a divergent canonical pathway (Figure 2). For growth cone pathfinding, it is currently unclear whether the canonical pathway is involved. No direct connections to the actin cytoskeleton have been found in the canonical pathway. LRP6, a coreceptor that is required for the canonical pathway, was found not to be required for A–P axon guidance of spinal cord commissural axons, although patterning defects where found in the spinal cord and other parts of the embryo in LRP6-knockout mice [4]. This would suggest that the canonical pathway is not involved in axon guidance. Further studies will be needed to determine whether LRP5 is compensating for the loss of LRP6 function in these mutant mice. The canonical pathway is worth further attention in axon guidance because stabilization of β-catenin not only leads to transcriptional responses but also could modulate cadherin-mediated adhesion, potentially contributing to axon pathfinding.

Is the PCP pathway involved in axon guidance? In Drosophila, the PCP pathway controls the tissue polarity of epithelial structures such as the orientation of cuticle hairs and sensory bristles [9–11] (Figure 2). Frizzled mutations lead to distortion of the tissue polarity in Drosophila. Wnts have been implicated as the ligands in this process, although the actual Drosophila Wnt protein involved has not been determined. Several PCP genes have been identified – such as Flamingo (also known as Starry night) and Strabismus (also known as Van Gogh), which encode membrane bound proteins essential to the establishment of tissue polarity – although the exact mechanisms of their action have not been elucidated [19,20]. In vertebrates, convergent extension is a morphogenetic process during gastrulation whereby the mesoderm and ectoderm tissues undergo mediolateral narrowing and A–P elongation. This process is mediated by highly directed cell movement and intercalation, appears to involve several key genes in the PCP pathway, and requires Wnt11 and Wnt5a [10,11,21–23]. Therefore, the same signaling pathway (the PCP pathway) is used for regulating tissue polarity in Drosophila and cell intercalation during convergent extension in vertebrates. Frizzled7 is required in the PCP pathway, which depends on Dishevelled but does not require LRP5, LRP6 or β-catenin. It requires a Formin-homology protein Daam1, which is not required in the canonical pathway [24]. The PCP pathway leads to changes in the actin cytoskeleton and provides directionality for morphogenesis and cell movement. Other vertebrate developmental processes, such as cochlear hair cell orientation, depend on PCP signaling. Mice with mutations in genes of the PCP pathway display defects in stereociliary
bundle formation [25]; Wnt7a has been implicated in this process [26].

It is attractive to consider a possible role for the PCP pathway, or a variation of it, in axon guidance. Cellular polarity created by the function of this pathway is analogous to the polarized migration of growth cones. PCP proteins are essential to directed cell movement in convergent extension during vertebrate gastrulation, a process analogous to directed migration of growth cones. Whether PCP proteins are present and control the direction of growth cone migration has not been evaluated. It should be noted that one of the core PCP components has been reported to have a role in axon target selection, a process that occurs after axons reach the vicinity of their targets. In visual system development in Drosophila, photoreceptor axon target selection requires Flamingo. It is interesting that this process does not require other core PCP proteins, such as Frizzled, Dishevelled, Strabismus or Prickle-spiny legs [27,28]. It has not been determined whether any Wnt proteins are involved in this interaction. Therefore, it is possible that Flamingo might function in an entirely different pathway from the PCP pathway in axon target selection in the fly visual system. Flamingo was shown to mediate repulsion of dendrites from homologous neurons in dendritic morphogenesis in Drosophila peripheral nervous system and also appears to function in a Frizzled-independent pathway [29]. Taken together, it is possible that these Flamingo-dependent processes of target selection and dendrite development are likely not to be part of the PCP pathway, or to require only a subset of the PCP machinery. It remains to be tested, however, whether Flamingo is involved in axon pathfinding and, if so, whether Flamingo regulates axon pathfinding via the PCP pathway.

The Wnt–Ca2+ pathway is an appealing candidate. The Wnt–Ca2+ pathway is involved in cell separation during convergent extension and cell migration (Figure 2). Cell separation, an integral part of the convergent extension, refers to cell movement from the adjacent cell layer, distinct from the process of the highly directed mediolateral cell intercalation, which is mediated by the PCP pathway [10,11]. Xenopus Wnt5a can stimulate intracellular Ca2+ release via Frizzled7, leading to activation of protein kinase C (PKC) in a G-protein-dependent
manner. During ovarian organogenesis in *Drosophila*, Wnt4 facilitates cell movement through activation of PKC and focal adhesion kinase [30]. Wnt5a has also been reported to increase PKC activity, cell motility and invasiveness of metastatic melanoma. This process appears to be mediated by Frizzled5 and is independent of β-catenin [31]. Therefore, the Wnt–Ca^{2+}–PKC pathway represents a third Wnt signaling pathway that regulates processes such as cell separation and cell motility. More recently, Dishevelled was found to be required for the Wnt–Ca^{2+} pathway as well [32], suggesting that the PCP and the Ca^{2+} pathways might be intimately connected. Interestingly, Dishevelled is a target of PKCδ in the Jun N-terminal kinase (JNK) pathway [33]. Although PKCδ is not Ca^{2+}-dependent, it is possible that Dishevelled can also be regulated directly or indirectly by other PKC isoforms, including Ca^{2+}-dependent PKCs. Interactions among the Wnt intracellular pathways could be an integral part of the regulatory networks. For example, activation of Ca^{2+}/calmodulin-dependent protein kinase II (CaMKII) leads to inhibition of the β-catenin pathway [34].

The Wnt–Ca^{2+} pathway is another good candidate for being involved in axon guidance. The PKC pathway is required in G-protein-coupled-receptor-mediated axon repulsion by stromal-cell-derived factor (SDF-1), a chemokine that attracts migrating leukocytes and cerebellar granule cells [35]. The repulsion can be converted into attraction when the cGMP level is increased. The cGMP-induced attraction to SDF-1 is also PKC-dependent. Although direct demonstration that Wnt proteins lead to activation of PKC in growth cone guidance has been lacking, it is an intriguing possibility and worth further attention. It should be noted that Ca^{2+} is involved in Netrin-1-induced axon outgrowth [36] and also activates the calcineurin–nuclear factor of activated T cells (NF-AT) pathway and stimulates axon outgrowth [37]. Therefore, the Wnt–Ca^{2+} pathway could trigger an attractive guidance pathway and might in fact be involved in the extension of long axons such as commissural axons after midline crossing [4].

Derailed and axon repulsion by Wnts

In the study of *Drosophila* midline axon pathfinding, Derailed was identified as a repulsive receptor in response to Wnt5. Derailed is a receptor-tyrosine-kinase-like protein, the signaling mechanism of which is unknown. Although its kinase domain is not active, it is required for the function [38]. It was proposed that there is crosstalk between the vertebrate homologue of Derailed, Ryk, and the EphB signaling pathway [39,40]. EphB is a major axon guidance receptor that is well established as a mediator of repulsion [41]. More recent studies also show that EphB can mediate attraction [42,43]. Is the Ephrin–Eph pathway involved in *Drosophila* midline axon guidance? Indeed, *Drosophila* Eph-like receptor, Dek/Deph, mediates the repulsive function of Dephrin, a *Drosophila* ephrin orthologue [44,45]. It is attractive to hypothesize that Derailed/Ryk could interact with the Eph pathway in mediating axon repulsion by Wnts. An obvious test would be whether DWnt5 and Dek/Deph, or Derailed and Dek/Deph, interact genetically. Alternatively, Derailed/Ryk could activate a separate repulsive signaling pathway. Identification of downstream signaling components of Derailed/Ryk will be informative for an understanding of the Ryk-dependent pathway(s).

Summary

Wnts are multifunctional axon guidance molecules that can both attract and repel axons. The attractive response is likely to be mediated by a Frizzled-dependent pathway and to be independent of Derailed/Ryk, because spinal cord commissural axons do not express Ryk [4]. The repulsion is mediated by Derailed and does not seem to involve Frizzled [3]. As more studies on Wnts in axon guidance are carried out, we will have the opportunity to test whether this pattern of Frizzled mediating attraction and Ryk mediating repulsion is true for all neurons that respond to Wnts. More studies will also be needed for further information on the downstream signaling mechanisms that mediate Wnt responsiveness and for understanding how dynamic responsiveness to Wnts is regulated. Currently known Wnt pathways, such as the PCP pathway and the Ca^{2+} pathway, are very appealing candidates. These pathways might not necessarily exclude one other in axon guidance. Instead, they could also function in a cooperative way, or they could control different aspects of the cellular processes of growth cone guidance. More and more recent studies suggest that these two pathways might not be separable. It is also possible that new Frizzled-dependent pathways could lead to axon attraction by Wnts. Different Wnt proteins appear to have different functions in development. It will be important to address how many of these Wnt proteins can regulate axon guidance, which Wnt proteins signal through which downstream signaling pathways, and which Wnt proteins interact with which Frizzled proteins in nervous system wiring.

Acknowledgements

I thank Xi He of the Children’s Hospital, Harvard Medical School, for his critical and insightful comments.

References

17 Lucas, F.R. et al. (1998) Inhibition of GSK-3β leading to the loss of phosphorylated MAP-1B is an early event in axonal remodelling induced by WNT-7a or lithium. J. Cell Sci. 111, 1351–1361
33 Kinoshita, N. et al. (2003) PKC delta is essential for Dishevelled function in a noncanonical Wnt pathway that regulates Xenopus convergent extension movements. Genes Dev. 17, 1663–1676

Articles of interest in Current Opinion journals

Exploring alternative models of rostral–caudal patterning in the zebrafish neurectoderm with computer simulations
Ajay B. Chitnis and Motoyuki Itoh
Current Opinion in Genetics & Development 10.1016/j.gde.2004.06.002

Reassessing mechanisms of low-frequency sound localisation
Alan R. Palmer
Current Opinion in Neurobiology 10.1016/j.conb.2004.06.001

Processing of complex stimuli and natural scenes in the visual cortex
Christoph Kayser, Konrad P. Körding and Peter König
Current Opinion in Neurobiology 10.1016/j.conb.2004.06.002

www.sciencedirect.com