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Many studies in the past decade have revealed the role and

mechanisms of Wnt signaling in axon guidance during

development and the reinduction of Wnt signaling in adult

central nervous system axons upon traumatic injury, which has

profound influences on axon regeneration. With 19 Wnts and 14

known receptors (10 Frizzleds (Fzds), Ryk, Ror1/2 and PTK7),

the Wnt family signaling proteins contribute significantly to the

wiring specificity of the complex brain and spinal cord circuitry.

Subsequent investigation into the signaling mechanisms

showed that conserved cell polarity pathways mediate growth

cone steering. These cell polarity pathways may unveil general

principles of growth cone guidance. The reappeared Wnt

signaling system after spinal cord injury limits the regrowth of

both descending and ascending motor and sensory axons.

Therefore, the knowledge of Wnt signaling mechanisms

learned from axon development can be applied to axon repair

in adulthood.
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Wnts are conserved guidance molecules for a
large numbers of central nervous system
axons
Vertebrate Wnts were first found to be axon guidance

molecules from studies on the guidance mechanisms

along the anterior–posterior axis of the spinal cord after

midline crossing of the well-known commissural axons

[1�]. The commissural axons, originating from the dorsal

spinal cord, turn anteriorly after they have reached and

crossed the midline (Figure 1a). A decreasing anterior-to-

posterior expression gradient of several Wnt family

secreted signaling proteins (Wnt4, Wnt5a, Wnt7a and

Wnt7b) controls the appropriate anterior turning of
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post-crossing commissural axons through an attractive

mechanism via Frizzled3, one of the Wnt receptors.

Disrupting Wnt gradients by secreted Frizzled-related

proteins (sFRPs) or Wnt signaling in Frizzled3, Celsr3 or
Vangl2 mutant mice resulted in randomized growth of

post-crossing commissural axons along the anterior–
posterior axis (Figure 1b). In the same year, Drosophila
Wnt5 was found to repel axons via another Wnt receptor,

Derailed [2�,3].

The vertebrate homology of Derailed, Ryk (receptor tyro-

sine kinase-related tyrosine kinase), was subsequently

shown to be a repulsive Wnt receptor promoting the

posterior-directed growth of descending corticospinal tract

axons along the anterior–posterior axis of the spinal cord

[4�]. Wnt1 and Wnt5 are expressed in an anterior-high-

posterior-low gradient in the dorsal spinal cord in neonatal

rodents when corticospinal tract axons are pathfinding from

the brain down through the spinal cord (Figure 2a). These

studies suggest that along the anterior–posterior axis of the

spinal cord, Wnt gradients may be important for wiring

many longitudinal tracts, an economic way to wiring many

axons with a few molecular cues [5].

In addition to corticospinal tract axons, the Wnt-Ryk

signaling system also repels corpus callosum after they

have crossed the midline to ensure that they pathfind

correctly in mice [6]. After midline crossing of callosal

axons, Wnt5a expressed in indusium griseum and in the

glial wedge functions as a repellant, resulting in the

tightly fasciculated axon tract in the corpus callosum.

In Ryk knockout mice, callosal axons are able to cross

midline, but are unable to project in the tight bundle after

crossing (Figure 2b). Furthermore, cortical neurons in

hamsters are also repelled by Wnt-Ryk signaling [7,8].

Therefore, a large number of brain axons are regulated by

Wnts as guidance cues during circuit wiring.

In addition to the Wnt gradients in the forebrain and the

spinal cord, Wnt5a and Wnt7b also show graded expression

along A–P axis in the developing hindbrain and midbrain,

although these gradients are more complex and change

directions at important embryonic tissue boundaries

(Figure 2c). The Wnt5a and Wnt7b gradients along the

A–P axis determine the orientation of ventral midbrain

dopaminergic axons (DA axons) and hindbrain serotonergic

axons in a Wnt-PCP pathway-dependent manner [9�,10].

The fact that Wnts have a general role in A–P guidance of

axons in vertebrate raises the question whether Wnts are
www.sciencedirect.com
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Spinal commissural axon A–P guidance is dependent on Wnt-PCP signaling. (a) A depiction of dorsal spinal commissural axonal tract in the developing

(E11.5) spinal cord. Commissural neurons extend the axons toward the floor plate following the Netrin and Shh gradients. After midline crossing,

commissural axons turn anteriorly following the Wnt gradient (anterior-high to posterior-low). (b) A typical phenotype of commissural axon A–P

guidance defect caused by PCP gene disruption. In wild type spinal cord, dorsal commissural axons strictly turn anteriorly after midline crossing. On

the other hand, Frizzled3 knockout randomizes post-crossing commissural axon guidance, meaning axons randomly turn toward anterior or posterior.

Same phenotype is observed in Vangl2 mutant (looptail mutation; S464N) mice, Celsr3 straight knockout mice, and Celsr3 conditional knockout

(Celsr3 fl/fl;Wnt1-Cre) mice. A, anterior; P, posterior; D, dorsal; V, ventral; RP, roof plate; FP, flor plate.
evolutionarily conserved cues for the A–P axis. Indeed,

mutations of Wnts and Wnt signaling components affect

the anterior–posterior guidance or patterning of many

axons in Caenorhabditis elegans [11–14]. In addition to

pathfinding, Wnts are also conserved topographic map-

ping molecules in target selection, which is beyond the

scope of this review [15,16]. It should be noted that this

function of Wnts is very different from path finding,
www.sciencedirect.com 
whereby Wnts provide directional information. In topo-

graphic mapping, Wnt concentration represents pos-

itional information to determine axon termination in

topographic mapping. The mechanisms of how Wnt

gradients specify topographic positions are not known.

Although the roles of Wnts in axon guidance of different

neuronal types and in different species are continuing to
Current Opinion in Neurobiology 2014, 27:232–240
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Figure 2
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Axon guidance mediated by Wnts. (c)A depiction of dopaminergic and serotonergic axon guidance in the developing midbrain and hindbrain. In the

ventral midbrain, Wnt5a is expressed in increasing anterior to posterior gradient, and Wnt7b is expressed in opposite gradient. The dopaminergic

neurons in A9 and A10 nuclei extend the axons toward anterior due to Wnt5a repulsion and Wnt7b attraction. On the other hand, the serotonergic

neurons in the hindbrain (B4–9 and B1–3) sense attractive Wnt5a gradients. (a)A depiction of corticospinal axon tract (CST) in the developing (�P0)

central nervous system. Wnt1 and Wnr5a are expressed in decreasing anterior to posterior gradient within the dorsal spinal cord. CST neurons express

Ryk, and Wnt-Ryk signaling repels axons, forming the descending CST axon tract in the dorsal spinal cord. (b) Wnt5a-Ryk repulsive signal in corpus

callosum. In the cortex, Wnt5a is expressed in indusium griseum (IG) and in the glial wedge (GW). Callosal axons express Ryk and are guided by a

Wnt5a repulsive signal.
be discovered, several key questions are emerging: (1)

How are various Wnt gradients established and main-

tained? (2) How does Wnts coordinate and integrate with

other axon guidance cues to establish patterns of connec-

tions? (3) Do Wnts also regulate direction of axonal

growth in the peripheral nervous system? The role of

Wnts in controlling the directions of peripheral axon

growth has not been rigorously tested. In fact, from the
Current Opinion in Neurobiology 2014, 27:232–240 
published studies, Wnts often do not appear to play

important roles in guidance but may rather control the

extension and survival of axons in the periphery [17]. In

addition, spiral ganglion axons were found not responsive

to several Wnts that are present in the environment [18].

More studies will need to be carried out to fully under-

stand the role of Wnt signaling system in axon guidance.

This will give rise to a comprehensive view about a major
www.sciencedirect.com
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genetic program governing brain wiring and how this

program interact with the rest of the molecular program.

Cell polarity signaling pathways mediate Wnt
function in growth cones
The sharp 908 anterior turn of postcrossing commissural

axons provides an outstanding experimental system to

understand signaling mechanisms leading to growth cone

steering. As described in previous sections, this anterior

turn is mediated by an anterior-high-posterior-low

expression gradient of several Wnts [19]. The first step

is to identify which Wnt signaling pathway controls the

direction of turning.

One of the Wnt signaling pathway is the planar cell

polarity pathway (PCP), which establishes planar polarity

in many tissues [20,21]. This important polarity pathway

is conserved from invertebrate to vertebrate. Frizzled,

Dishevelled (Dvl), Diego, Vangl (Van Gogh in Droso-

phila), Celsr (Flamingo in Drosophila) and Prickle (Pk) are

the six ‘core components’ of this signaling pathway. In

addition to Frizzled3, additional PCP components, Celsr3

and Vangl2, are also required for normal anterior turning

of commissural axons after midline crossing, suggesting

that commissural axon growth cones use PCP signaling to

mediate turning [22�].

PCP signaling is mediated by a series of largely not-yet-

well-understood biochemical reactions or cellular pro-

cesses. These processes are likely spatially and

temporally organized in cells or cellular structures to drive

polarization. A recent study revealed a novel antagonistic

interaction between PCP components, Vangl2 and

Dishevelled1 [22�]. Dishevelled1 induces Frizzled3

hyperphosphorylation and inhibits Frizzled3 endocytosis,

whereas Vangl2 inhibits Dishevelled1-induced Frizzled3

hyperphosphorylation  and promotes Frizzled3 endocy-

tosis. Antagonistic interactions among cell polarity sig-

naling components are likely the key mechanisms to

introduce or maintain asymmetry. In live growth cones,

Vangl2 is asymmetrically localized to filopodia tips that

are elongating. The tips of shrinking filopodia have

either low levels or no Vangl2 protein, suggesting that

Vangl2 may promote Frizzled3 endocytosis in a subset

of filopodia to cause asymmetry of signaling for steering

and that the growth cone is not equally sensitive every-

where [22�].

Because Frizzled endocytosis is a crucial step for Wnt-

PCP signaling, it provides an important handle to under-

stand growth cone signaling mechanisms. The next useful

step is to understand how Frizzled3 phosphorylation and

endocytosis is regulated. Surprisingly, Dishevelled1 and

2, which are cytoplasmic adaptor proteins and mediate

Wnt-PCP signaling, act in opposition to regulate

Frizzled3 endocytosis [23�]. Dishevelled2 antagonizes

Dishevelled1 effects on Frizzled3 (hyperphosphorylation
www.sciencedirect.com 
and membrane accumulation) and is essential for Wnt-

PCP pathway activation as measured by JNK activation.

Once Dishevelled2 is activated by Wnt-Frizzled3 and

Frizzled3 is endocytosed, Dishevelled1 is inhibited,

allowing for more Frizzled3 endocytosis. More Frizzled3

endocytosis further activates Dishevelled2 [23�]. There-

fore, it is plausible that this biochemical amplification

loop may underlie the rapid polarization of growth cones

to quickly select a subset of filopodia over the rest, which

is commonly observed in growth cone guidance

(Figure 3).

A previous study identified atypical Protein Kinase C

(aPKC), a key components of the apical-basal polarity (A-

BP) pathway, which mediates Wnt attraction of post-

crossing commissural axons and thus mediates anterior

turning [24�]. aPKC was found to suppress Dishevelled1’s

effects on Frizzled3 independent of Vangl2. Further-

more, Dishevelled2, but not Dishevelled1, activates

aPKC. These results suggest that aPKC is not only

intimately associated with PCP signaling but may also

be a key component of this biochemical amplification

loop [23�] (Figure 3). This finding may have general

implications in cell and tissue polarity signaling beyond

axon guidance. PCP signaling is only active on the apical

side of epithelial tissues where aPKC is localized at the

adherence junctions, but not on the basal-lateral sides

where aPKC is absent [20,25,21].

In addition to commissural axons, dopaminergic and

serotonergic axons also respond to Wnts via PCP signaling

[9�,10]. In invertebrates, PCP signaling has also been

shown to mediate guidance of several classes of axons

[26,27]. Because apical-basal polarity and planar cell

polarity signaling pathways are universal in all neuronal

growth cones, the widespread use of these cell polarity

proteins in growth cone steering inspires a question

whether this could be a universal signaling logic for

directionality in axon guidance in general [28].

These studies broke open new avenues to address the

long-standing questions of how growth cones respond to

shallow concentration gradients of guidance cues. Further

elucidating how Frizzled3 trafficking and phosphoryla-

tion is regulated will shed important insights. Frizzled3

trafficking appears to be through a specific route by a

small GTPase, Arf6, a separate trafficking ‘channel’ from

many other vesicles mediated by a number Rabs, which

may mediate the trafficking of other PCP components

(Figure 3a) [23�]. Sorting out the exact trafficking routes

will be essential for fully understanding the signaling

mechanism. Identifying Frizzled3 kinases will also be

highly informative.

Cytoskeletal structures play pivotal roles in growth cone

steering and axon initiation. How extracellular cues coor-

dinate the dynamics of actin and microtubules to achieve
Current Opinion in Neurobiology 2014, 27:232–240
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Figure 3
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A working hypothesis for Wnt-PCP signaling-mediated axon guidance. (a) Scheme of molecular mechanism in Wnt-PCP signaling. In the absence of

Wnt, Dishevelled1 inhibits Frizzled3 endocytosis by inducing Frizzled3 hyperphosphorylation. Upon Wnt binding, Frizzled3 is endocytosed and

activates the Dishevelled2-aPKC/PAR6 axis. aPKC then inhibits Dishevelled1. In the meantime, Vangl2 also inhibits Dishevelled1. As a result, more

Frizzled3 is endocytosed and activates downstream signaling, which then in turn further removes inhibition by Dishevelled1. Arf6 mediates Frizzled3

endocytosis and its essential roles in PCP signaling activation. (b) A working hypothesis of commissural axonal growth cone turning according to Wnt

gradients. In the absence of Wnts gradient, Frizzled3 is endocytosed randomly through the filopodia tips and active aPKC is distributed uniformly (left

growth cone). In a Wnt gradient, Frizzled3 endocytosis occurs more frequently in the proximal side and causes more aPKC activation (middle growth

cone). Those asymmetry may help to steer growth cone turning (right growth cone).
directed growth is not fully understood [29–32]. Asking

whether and how Frizzled3 endocytosis leads to changes

in polymerization and stability of actin and microtubules

in or near the filopodia where Frizzled3 is internalized

may provide valuable clues [23�]. aPKC activation and

Frizzled3 endocytosis are both concentrated on the sides

of growth cones facing higher Wnt concentration

(Figure 3b). One of the PCP signaling output, JNK, is

likely activated in select subsets of filopodia [23�]. The

role of aPKC and JNK on cytoskeletal structures and

membrane trafficking in growth cones are not yet under-

stood. Additional signaling effects of endocytosed
Current Opinion in Neurobiology 2014, 27:232–240 
Frizzled3 will also need to be investigated to understand

how cell biological events are regulated during turning.

Wnt5a-Ryk repulsive signaling
Wnt5a-Ryk repulsion is also mediated by calcium sig-

naling in the hamster cortical neuron culture [7,8,33].

Inhibition of IP3 receptors and TRP channels reduces the

rate of axon outgrowth. Inhibition of TRP channels shows

guidance defects. A recent study showed that Tau phos-

phorylation by CaMKII influences microtubule dynamics

in the growth cones and is necessary for Wnt5a-repulsive

responsiveness [34]. Because both Frizzled3 and Ryk are
www.sciencedirect.com
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Figure 4
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A model of Wnt5a-Ryk repulsive signaling. Wnt5a evokes calcium

activity through Ryk and Frizzled(s), which involves calcium entry

through TRP channels and calcium release from intracellular stores

through IP3 receptor on the ER. Ryk and TRP channels activity are

required for both Wnt5a-induced axon elongation and repulsion. On the

other hand, Frizzled(s) and IP3 receptor activity are required for Wnt5a-

induced axon repulsion and elongation, respectively. It remains

unknown how Ryk and Frizzled regulate TRP channels, and how calcium

signal from different source regulates different process.
required for proper corpus callosum axon guidance, it is

possible that Wnt-Frizzled signaling may affect Wnt-Ryk

signaling pathway or vice versa. Indeed, sFRP2 pretreat-

ment blocks Wnt5a-induced growth cone repulsion, but

not axon elongation, suggesting Frizzled(s) works

together with Ryk and TRP channels (Figure 4). How-

ever, it is unclear which Frizzled(s) is/are involved in this

repulsive signaling, how Ryk and Frizzled(s) regulate

calcium influx through TRP channels, and how calcium

signal from different sources separately regulates axon

elongation and repulsion. Two recent papers may provide

important clue. Ryk turned out to be a regulator of PCP

signaling, suggesting that PCP signaling is the core of

guidance signaling and Ryk mediates Wnt repulsion by

inhibiting PCP signaling [35,36].

Injured axons in adult spinal cord respond to
Wnts in similar fashion as in development
Research on axon regeneration after adult spinal cord

injury has been focused on the molecular environment in

the adult nervous system. The role of axon guidance

molecules has never been the center of attention. How-

ever, recent work began to reveal a somewhat unexpected

principle: injured adult axons still respond to axon gui-

dance molecules in ways similar to development [37].

Wnts are either not expressed or expressed at undetect-

able levels in adult spinal cord. However, upon spinal

cord injury, Wnt transcripts are quickly elevated in

multiple cell types at and around the lesion site [38�]
(Figure 5a). Subsequently, the induction of Wnt signaling
www.sciencedirect.com 
molecules in the spinal cord has been confirmed in

multiple models of spinal cord injury and observed on

the transcript and protein level [44,45]. Concomitant with

the up regulation of Wnts after dorsal column injury, Ryk

was found quickly induced as well [38�]. Just as Ryk acts

as a repulsive Wnt receptor in developing corticospinal

neurons, its causes axon retractions and limits plasticity

after injury. Inhibition of Wnt-Ryk signaling with poly-

clonal antibody infusion reduces corticospinal axon

retraction and promotes sprouting of collaterals within

the spared spinal cord tissue [38�] (Figure 5a). Another

study confirmed the induction of Ryk in the CST and

repulsive function of Wnt-Ryk signaling to corticospinal

tract axons [46].

In addition to the descending motor axons, the regen-

erative ascending sensory axons are also inhibited by

Wnts in adulthood [47�]. Conditioning of the peripheral

nerve by nerve crush can initiate a cascade of growth

signals in primary sensory dorsal root ganglia (DRG)

neurons. This growth state promotes regeneration follow-

ing either a subsequent peripheral injury proximal to the

original, or, remarkably, following an injury to the central

sensory axon within the spinal cord [48,49]. Curiously,

peripheral conditioning induces several Wnt signaling

components in the DRG, including the repulsive receptor

Ryk [47�]. These induced Wnt signaling components

sensitize dorsal column sensory axons to spinal cord injury

induced Wnts, limiting conditioning-mediated regener-

ation (Figure 5b). Exogenously applied Wnts are capable

of causing long-range retraction of sensory axons after

peripheral conditioning injury, providing anatomical evi-

dence for the repulsive action of Wnts on injured sensory

axons [47�]. Therefore, similar to development, Wnts can

repel injured axons if they express Ryk in adulthood.

Although these findings are exciting, the research on the

roles of Wnt signaling in spinal cord injury is at its infancy.

Due to the complexity of Wnt signaling pathway and

multiple functions of Wnt signaling in different cell types,

the interpretation of results require extra care. For

example, we do not fully understand the biological func-

tion of the reinduced Wnt signaling system in adult spinal

cord, particularly in glial responses. Canonical Wnt sig-

naling has been shown activated in NG2+ progenitors and

astrocytes after brain injury by the b-catenin reporter

BATgal mouse line [52]. Interestingly, b-catenin activity

induced in NG2 proteoglycan-expressing glial precursors

in the brain has not been observed in the injured spinal

cord [45,52]. Demyelinating lesions of the spinal cord

induce b-catenin activity in Oligodendrocyte Lineate

Transcription Factor 2 (Olig2) cells and increasing cano-

nical Wnt signaling results in hypomyelination after

injury [53]. Therefore, manipulating Wnt signaling may

affect glial scar formation myelin repair. In addition to

axon regeneration and glial responses, Wnt signaling is

likely important in regulating axon survival and/or
Current Opinion in Neurobiology 2014, 27:232–240
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Figure 5
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Reinduced Wnts repel both motor and sensory axons in injured spinal cord.
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degeneration, as robust changes of Wnt signaling com-

ponents in animal models of neurodegeneration have

been observed [54]. Therefore, functional improve-

ments may also be contributed by increase of neuronal

survival after spinal cord injury, which need to be

characterized.

On one hand, it may appear an impossibly daunting task

to fully understand the injury response in the adult spinal

cord. On the other hand, this may be the only way to be

successful. Genetic approaches to knockout genes in a

spatial and temporal way in different neuronal and glial

cell types will be an important step to tease apart the

contribution of different cell types. Clever and clean ways

to deliver interventions in an appropriate spatial and

temporal manner will be needed to achieve repair without

causing adverse effects.

Summary
Studies on the role and mechanisms of Wnt signaling in

axon guidance and spinal cord injury have taught us that

important axon guidance cues are often highly conserved

and that the same molecular cues can be used to wire

many different neurons. Signaling mechanisms of growth

cone steering may be universally shared and may be

similar to how cells are polarized in epithelia. Axon

guidance molecules are reinduced in spinal cord injury

and play profound roles in the capacity for axon regen-

eration in the central nervous system. Axon guidance

molecules, such as Wnts, may also have functions on

the glial and fibroblast environment and may regulate

immune responses as well as growth of axons. Teasing out

the detailed mechanisms of Wnts in all these processes

will be necessary to develop effective treatments.
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