Retinoic Acid Signaling Restricts the Cardiac Progenitor Pool
Brian R. Keegan, et al.
Science 307, 247 (2005);
DOI: 10.1126/science.1101573

The following resources related to this article are available online at www.sciencemag.org (this information is current as of October 11, 2007):

Updated information and services, including high-resolution figures, can be found in the online version of this article at:
http://www.sciencemag.org/cgi/content/full/307/5707/247

Supporting Online Material can be found at:
http://www.sciencemag.org/cgi/content/full/307/5707/247/DC1

A list of selected additional articles on the Science Web sites related to this article can be found at:
http://www.sciencemag.org/cgi/content/full/307/5707/247#related-content

This article cites 16 articles, 7 of which can be accessed for free:
http://www.sciencemag.org/cgi/content/full/307/5707/247#otherarticles

This article has been cited by 25 article(s) on the ISI Web of Science.

This article has been cited by 8 articles hosted by HighWire Press; see:
http://www.sciencemag.org/cgi/content/full/307/5707/247#otherarticles

This article appears in the following subject collections:
Development
http://www.sciencemag.org/cgi/collection/development

Information about obtaining reprints of this article or about obtaining permission to reproduce this article in whole or in part can be found at:
http://www.sciencemag.org/about/permissions.dtl
Retinoic Acid Signaling Restricts the Cardiac Progenitor Pool

Brian R. Keegan, Jessica L. Feldman, Gerrit Begemann, Philip W. Ingham, Deborah Yelon

Organogenesis begins with specification of a progenitor cell population, the size of which provides a foundation for the organ’s final dimensions. Here, we present a new mechanism for regulating the number of progenitor cells by limiting their density within a competent region. We demonstrate that retinoic acid signaling restricts cardiac specification in the zebrafish embryo. Reduction of retinoic acid signaling causes formation of an excess of cardiomyocytes, via fate transformations that increase cardiac progenitor density within a multipotential zone. Thus, retinoic acid signaling creates a balance between cardiac and noncardiac identities, thereby refining the dimensions of the cardiac progenitor pool.

Generation of the proper number of organ progenitor cells is likely to involve interplay between inductive and repressive signaling pathways. Key inductive mechanisms have been identified for many organs, including the heart, but mechanisms for repressing progenitor fate assignment are poorly understood. Several factors, including Bmp2, Fgf8, Nodal, and Wnt11, are implicated in promoting the initial selection of myocardial progenitor cells from a multipotent population (1). Although convergence of inductive signals might be sufficient to delimit the number of progenitor cells, opposing signals could also be necessary to restrict myocardial specification. Prior studies have suggested mechanisms for inhibiting cardiomyocyte differentiation within the anterior lateral plate mesoderm (ALPM), by means of Notch signaling (2) or interactions with the notch-chord (3), but little is known about whether repressive pathways limit the initial assignment of myocardial identity.

We find that reduction of retinoic acid (RA) signaling causes formation of an excess of cardiomyocytes. The zebrafish mutation neckless (nls) disrupts function of the retinaldehyde dehydrogenase 2 gene (raldh2), which controls a rate-limiting step in RA synthesis (4, 5). nls mutants exhibit an increased number of cells expressing nklx2.5, a marker of the bilateral populations of precardiac mesoderm within the ALPM (Fig. 1A). Although nklx2.5 expression appears expanded in anterior, posterior, and lateral directions (Fig. 1, A and B), we do not observe an increase in the overall size of the ALPM in nls mutants (fig. S1A). As myocardial differentiation proceeds, nls mutants exhibit a surplus of cardiomyocytes, identifiable by their expression of cardiac myosin light chain 2 (cmlc2) (Fig. 1B; fig. S1B). Formation of this myocardial surplus depends on the conventional myocardial differentiation pathway (1), which requires the activity of the growth factor Fgf8 and the transcription factors Hand2 and Gata5 (fig. S2). Consistent with a repressive influence of RA on cardiomyocyte formation, exposure to the pan-retinoic acid receptor (RAR) antagonist BMS189453 (6, 7) causes expansion of nklx2.5 and cmlc2 expression (Fig. 1, A and B). Conversely, exposure to exogenous RA results in a reduced number of cardiomyocytes (fig. S1C) (8). Together, these data demonstrate that cardiomyocyte population size within the ALPM is inversely related to the level of RA signaling.

The raldh2 gene is expressed throughout early zebrafish embryogenesis (4, 5): In the blastula, raldh2 is found at the embryonic margin; during gastrulation, raldh2 is in in vivo experiments, raldh2 is in both lateral and paraxial mesoderm. To investigate whether RA levels affect cardiomyocyte number, we tested the effectiveness of BMS189453 during different time intervals, initiating exposure at various stages and later assessing nklx2.5 and cmlc2 expression (Fig. 1, C and D; fig. S3). Addition of BMS189453 before gastrulation (40% epiboly, 5 hours post fertilization [hpf]) causes a myocardial expansion, whereas addition of BMS189453 during gastrulation (75% epiboly, 8 hpf) results in a more modest increase.

1Developmental Genetics Program, Skirball Institute of Biomolecular Medicine, and Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA. 2Lehrstuhl Zoology/Evolutionary Biology, University of Konstanz, 78457 Konstanz, Germany. 3Centre for Developmental Genetics, Department of Biomedical Science, University of Sheffield School of Medicine, Firth Court, Western Bank, Sheffield S10 2TN, UK.

*To whom correspondence should be addressed. E-mail: yelon@saturn.med.nyu.edu
Fig. 1. Cardiomyocyte number increases when RA signaling is reduced. Expression of (A and C) nkx2.5 and (B and D) cmlc2, at indicated somite (som) stages. Dorsal views, anterior to the top, comparing wild-type and nls mutant siblings, as well as untreated and BMS189453-treated wild-type siblings. (A and B) RAR antagonism has a more potent effect than raldh2 loss of function, consistent with the presence of low levels of RA in raldh2 mutants (5, 10, 18, 19). (C and D) RA signaling is required before tailbud stage to prevent expansion of nkx2.5 and cmlc2 expression.

Fig. 2. Reduction of RA signaling increases myocardial progenitor density. (A) Lateral view, 40% epiboly, animal pole to the top. Latitude is measured in tiers (white bars and numerals), defined as cell diameters from the embryonic margin (9). Here, we labeled two neighboring blastomeres (green) in tier 3. (B) Animal view, dorsal to the right. Longitude is measured as angular distance along the embryonic circumference, with the dorsal midline [marked by the center of Tg(gsc:gfp)] expression; arrow defined as 0° (9). Here, labeled cells (arrowhead) are 153° to 160° from dorsal. (C) Frontal view at 44 hpf, head to the top. Here, we detected three labeled cardiomyocytes (blue cells, arrows; pink, cmlc2 expression). (D and F) Myocardial fate maps in (D) wild-type and (F) BMS189453-treated embryos. Each symbol represents the location of labeled blastomeres in an individual experiment and indicates whether these cells contributed to the myocardium. (E and G) Schematics depicting myocardial progenitor distribution in the zebrafish blastula. Reduction of RA signaling increases the number of blastomeres in the LMZ (blue box) that become myocardial progenitors (blue dots). Images in (D) and (E) adapted from (9).

In contrast, adding BMS189453 at the end of gastrulation (tailbud, 10 hpf) does not alter total cardiomyocyte number. Therefore, RA signaling is required during gastrulation for its effects on cardiomyocyte population size.

Because of the early influence of RA on cardiomyocyte formation, we hypothesized that inhibition of RA signaling creates a myocardial surplus through fate transformation, rather than through myocardial proliferation. To test this model, we generated a myocardial fate map in BMS189453-treated embryos. By adapting a technique that we have used in wild-type embryos (9), we examined the frequency with which cardiomyocytes originate from particular locations within the blastula. Using laser-mediated activation of caged fluorescein (6), we labeled selected blastomeres at 40% epiboly. We recorded the positions of labeled blastomeres using latitude and longitude coordinates (Fig. 2, A and B) (9) and then treated embryos with BMS189453. Later, we evaluated the fates of labeled cells, with an emphasis on their cardiac contributions (Fig. 2C). In 60 of our 120 labeling experiments (Fig. 2F), labeled blastomeres were located in the lateral marginal zone (LMZ). This zone, defined as the first three tiers of blastomeres between 60° and 140° from the dorsal midline, is the most common region of origin for myocardial progenitors in wild-type embryos (Fig. 2D) (9).

Fate map comparisons (Fig. 2, D and F) reveal that RA affects the number of LMZ blastomeres that become myocardial progenitors. In both wild-type and BMS189453-treated embryos, myocardial progenitors are found throughout the LMZ (Fig. 2, D and F). However, in BMS189453-treated embryos, LMZ blastomeres generate myocardial progenitors twice as often as they do in wild-type embryos [labeled cardiomyocytes detected in 45% (27 out of 60) of BMS189453-treated embryos (Fig. 2F) versus 20% (20 out of 100) of comparable wild-type embryos (Fig. 2D) (9); binomial test, $P < 0.05$]. This substantial increase in progenitor density is accompanied by a slight expansion of the region containing myocardial progenitors; in BMS189453-treated embryos, we occasionally detect myocardial progenitors just outside of the dorsoventral boundaries of their typical wild-type locations (Fig. 2, D and F). Although BMS189453-treated embryos appear to contain an increased number of myocardial progenitors, the individual progenitors each seem to produce the same number of cardiomyocytes as their wild-type counterparts. On the assumption that only one progenitor is labeled in each experimental embryo (9), the average myocardial contribution per progenitor is 4.3 cardiomyocytes in wild-type embryos (9) and 4.8 cardiomyocytes...
cell types are sensitive to RA signaling pancreas (cardiogenesis; previously established roles E and G).

Formations that arise from within the LMZ (Fig. 2, cardiac and noncardiac progenitor populations that RA influences the balance between (fig. S3). The differential effects of reducing RA signaling during gastrulation suggest that RA influences the balance between cardiac and noncardiac progenitor populations that arise from within the LMZ (Fig. 2, E and G).

Taken together, our data indicate that RA signaling has a potent repressive role during cardiac specification. It is evident that this early role of RA is one of many functions for this signaling pathway during cardiogenesis; previously established roles for RA include influences on cardiac chamber identity (8, 11–13), terminal myocardial differentiation (14), cardiac looping (12, 15), and ventricular maturation and growth (12, 16, 17). Beyond uncovering an additional role for RA, our data also suggest a new means by which RA regulates fate assignment. Several previous studies, including analyses of the zebrafish hindbrain (4, 5) and gut (10), have suggested that RA has a posteriorizing influence during the establishment of anterior-posterior coordinates. However, reduction of RA signaling does not appear to cause a unidirectional shift in the location of myocardial progenitors (Fig. 2). Instead of defining spatial boundaries for myocardial specification relative to the embryonic axes, RA signaling seems to impose limits on the density of myocardial progenitor cells intermingled within in an eligible population. We propose that RA, synthesized within or near the LMZ (4, 5), biases fate assignments in this area, restricting the opportunities for becoming myocardial. Thus, the repressive function of RA during cardiac specification provides an example of a previously unappreciated mode of selecting organ progenitors from within a multipotential pool.

References and Notes
5. H. Grandel et al., Development 129, 2851 (2002).
6. Materials and methods are available as supporting material on Science Online.

Global Circumnavigations: Tracking Year-Round Ranges of Nonbreeding Albatrosses

Although albatrosses are paradigms of oceanic specialization, their foraging areas and migration routes when not breeding remain essentially unknown. Our continuous remote tracking of 22 adult gray-headed albatrosses for over 30 bird-years reveals three distinct strategies: (i) Stay in breeding home range; (ii) make return migrations to a specific area of the southwest Indian Ocean; and (iii) make one or more global circumnavigations (the fastest in just 46 days). The consistencies in patterns, routes, and timings offer the first hope of identifying areas of critical habitat for nonbreeding albatrosses, wherein appropriate management of longline fisheries might alleviate the plight of the world’s most threatened family of birds.

Albatrosses are the world’s most threatened family of birds (with 19 of 21 taxa on the International Union for the Conservation of Nature Red List). Recent catastrophic population decreases are mainly a consequence of incidental mortality in longline and trawl fisheries. Knowledge of the at-sea distribution of albatrosses is thus critical to their conservation, yet few data from birds of known status and provenance are available outside the breeding season. Regular successive recoveries have been made off eastern Australia of wandering albatrosses (Diomedea exulans) banded at South Georgia (54°00’S, 38°03’W), showing that some birds migrate great distances, but more recent tracking data from the same species breeding in the Indian Ocean indicate that this population is much more sedentary during the nonbreeding period (2–4). Satellite tracking of postbreeding birds of other species has confirmed several long-distance migrations (5, 6), but the brevity of these studies and the small samples mean that range and behavior during the nonbreeding season is, by comparison, very little known.

We deployed leg-mounted light level loggers (7) on 47 gray-headed albatrosses (Thalassarche chrysostoma) that were rearing chicks at the end of the austral summer (April 1999) at Bird Island, South Georgia. This species breeds biennially when successful, and 35 of the loggers were retrieved between September and November 2000, of which 22 provided complete data throughout the approximately 18-month interval between breeding events (corresponding to 11,034 bird-days) and 13 failed to download.

*To whom correspondence should be addressed.
E-mail: jpcr@bas.ac.uk

Supporting Online Material
www.sciencemag.org/cgi/content/full/307/5707/247/ DC1
Materials and Methods
Figs. S1 to S3
Tables S1 and S2
References and Notes
16 June 2004; accepted 19 November 2004
10.1126/science.1101573

www.sciencemag.org SCIENCE VOL 307 14 JANUARY 2005

249