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Experiments reported in the past year have revealed
considerable diversity in Toll-mediated pathways for signal
transduction in development and innate immunity. Rather than
function as a well conserved signaling cassette, Toll receptors
and associated factors have apparently evolved as a diverse
set of configurations to defend against microbial infection in
species ranging from plants to humans.
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Abbreviations
gd gastrulation defective
IKK IκB kinase
IL-1 interleukin-1
imd immune deficiency
IRAK IL-1 receptor associated kinase
Ird immune response deficient
LPS lipopolysaccharide
LRR leucine-rich repeat
NLS nuclear localization signal
Tlr Toll-like receptor

Prelude
The Toll signaling pathway was discovered independently
in the biochemical investigation of cytokine responses in
cultured mammalian cells and in the molecular genetic dis-
section of embryonic patterning in Drosophila [1–3]. In both
systems, transmembrane receptors of the Toll family signal
through adaptor molecules and protein kinases to effect
nuclear localization of a transcription factor (Figure 1).
Evolutionary conservation of the systems first became
apparent with the discovery that the mammalian transcrip-
tion factor NF-κB and the Drosophila morphogen Dorsal,
the targets of these pathways, were both homologous to the
products of the vertebrate proto-oncogene c-rel. 

With the characterization of additional components and the
elaboration of more mechanistic details, it appeared that the
Toll-family receptors and associated factors constituted a
conserved signaling cassette employed for distinct purposes
at different times and in different tissues. The Toll pathway
would thus take its place alongside other conserved signaling
systems, such as those described for Wnt and Ras [4,5].
Recent evidence, however, indicates that there are in fact
several different Toll pathways. These pathways carry out
signal transduction by distinct routes, yet are largely restrict-
ed to a single function, that of defense against infection.

One Toll pathway involves direct activation of the receptor
by a pathogen-encoded macromolecule. A second functions

as part of a signal relay system, mediating intracellular sig-
naling in response to activation of a host-encoded ligand.
Others involve a limited subset of pathway components.
Together, these divergent forms of the Toll-signaling cas-
sette constitute an intriguing series of variations based on a
common molecular and functional theme. Here I review
these variations, bringing into a common context recent
results from biochemical experiments, genetic studies, and
genome analyses.

Statement of the theme: Toll-like receptors in
mammalian innate immunity
Upon binding with bacterial lipopolysaccharide (LPS) or
interleukin-1 (IL-1), mammalian cell-surface receptors ini-
tiate a signal-transduction pathway that directs release of
NF-κB (a p50/p65 heterodimer) from its inhibitor IκB
(Figure 1b) [6]. Receptor activation drives formation of a
complex that includes the IL-1 receptor associated kinase
(IRAK) and two adaptor proteins, TRAF6 and MyD88.
This multiprotein assembly mediates activation of the IκB
kinase (IKK) complex, which targets IκB for degradation
via phosphorylation of specific serine residues [7•]. The
subsequent ubiquitination and proteolysis of IκB exposes
the nuclear localization signal (NLS) on NF-κB, allowing
nuclear import and activation of gene expression.

In the innate immune response to infection, the critical
receptors for NF-κB regulation are homologues of the
Drosophila Toll protein. Toll and Toll-like receptors (Tlrs)
from flies and mammals contain extracellular binding sur-
faces comprising leucine-rich repeats (LRRs), a single
membrane-spanning domain, and an intracellular domain
that mediates signal transduction but lacks apparent cat-
alytic activity [8,9]. Conservation between the Toll
cytoplasmic domain and that of both the IL-1 receptor and
some plant R (disease resistance) proteins led to the desig-
nation of this region as the TIR domain.

The demonstration that a transfected Tlr gene could acti-
vate NF-κB and the identification of Tlr4 mutations in
LPS-resistant mice established Tlr4 as a critical mediator
of LPS signaling [10,11]. Moreover, the Tlr4 gene from a
given mammal (human, mouse, or hamster) confers on
transfected cells the ability to respond to the specific LPS
derivative to which that species is sensitive [12••,13••].
Such results suggest strongly that LPS interacts directly
with Tlr4 to activate signal transduction. 

Given the existence of more than a half dozen mammalian
Tlr genes, there is the potential for different family members
to be specific for different sets of microbial pathogens [14•].
Indeed, several studies reveal that Tlr2 and Tlr4 recognize
distinct microbial products: Tlr2 is specific for Gram-positive
bacteria, whereas Tlr4 recognizes Gram-negative species
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[13••,15••,16••]. Hence, for example, mice lacking a func-
tional copy of the Tlr2 gene respond normally to LPS but are
defective in their response to peptidoglycan. The Tlr mole-
cules may, thus, form recognition elements that prime the
immune system for battle with particular classes of infectious
agents [17].

Variation 1: Toll signaling in antifungal
defense and pattern formation 
The Toll pathway in Drosophila was first identified on the
basis of its role in establishing embryonic dorsoventral
polarity (Figure 1a) [2]. Homodimers of the Dorsal protein
are initially present throughout the embryonic cytoplasm,
where they are retained by an inhibitor, Cactus. Following
fertilization, a localized source of the ligand Spätzle is
believed to activate Toll in a graded ventral to dorsal pat-
tern over the surface of the syncytial embryo. Activated
Toll signals to the Dorsal/Cactus complex via an adaptor,
Tube, and a protein kinase, Pelle. The result is Cactus
degradation and formation of a nuclear concentration gra-
dient of Dorsal that defines dorsoventral polarity.

Spätzle, Toll, Tube, Pelle, and Cactus function in concert
again in both larvae and adults as part of the invertebrate
innate immune response [18]. Upon fungal challenge,
wild-type Drosophila express Drosomycin, a potent anti-
fungal peptide. This immune response is protective,
because flies mutant for spätzle, Toll, tube, pelle, or cactus fail
to induce the drosomycin gene and succumb to fungal infec-
tion much more readily than the wild type. The direct

inducer of drosomycin in adults is not Dorsal, but rather Dif,
the Drosophila immunity factor [19••].

Despite the fact that Toll, Pelle, Cactus, Dorsal and Dif all
have structural and functional counterparts in vertebrates,
the Dorsal/Dif pathway differs from the NF-κB pathway in
several significant respects. First, Spätzle, the Toll ligand,
is not a fungal product but is instead a host-encoded pro-
tein that is activated by proteolysis [20,21••]. In
dorsoventral patterning, Spätzle is activated by a prote-
olytic cascade involving the products of the gastrulation
defective (gd), snake, and easter genes [22]. A different prote-
olytic pathway is required in the antifungal defense
because mutations in a serine protease inhibitor (serpin)
gene result in constitutive Drosomycin expression even in
the absence of gd or snake function [21••]. Thus it appears
that fungal infection triggers a proteolytic pathway leading
to activation of Toll, which then relays information to the
nucleus via Dif.

A second way in which the Drosophila Toll pathway differs
from the mammalian Tlr4 pathway is in the proteins
required to induce Cactus degradation (Table 1). Cactus pro-
teolysis is regulated, at least in part, by motifs similar to those
targeted by vertebrate IKK proteins and by a conserved
pathway for signal-induced ubiquitination [23,24,25•].
Nevertheless, the Drosophila homologues of the kinase IKKβ
and the regulatory subunit IKKγ are dispensable for
dorsoventral patterning and the anti-fungal response
(J Hoffmann, personal communication; K Anderson, person-
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Figure 1

Variations on the Toll Pathway. (a) Dorso-
ventral axis formation in Drosophila embryos.
A cleaved form of Spätzle generated in the
ventral portion of the extraembryonic space
binds to and activates Toll. The Toll
cytoplasmic domain (TIR) mediates signaling
to a complex of Cactus and a Dorsal dimer.
The detailed mechanism is not known but
requires interaction between the death
domains (DD) of Pelle and Tube, as well as
the catalytic activity of the Pelle kinase
domain. Signaling to Cactus and to Dorsal
results in Cactus degradation and Dorsal
nuclear import. The pathway for the antifungal
response appears identical, except that Dif
serves in place of Dorsal. (b) Innate immune
response in human cells. Binding of LPS to
the Tlr4 receptor leads to interaction between
the TIR domains of Tlr4 and MyD88. A
complex of IRAK and TRAF6, formed upon
interaction of the MyD88 and IRAK death
domains, activates the IKK complex. This
assembly of the IKKα and IKKβ kinases and
the IKKγ (NEMO) regulatory subunit
phosphorylates serines 32 and 36 on IκB-α.
The subsequent ubiquitination and
proteasome-mediated degradation of IκB
exposes the NLS on NF-κB, promoting
nuclear translocation.
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al communication). A remaining candidate for the Cactus
kinase is DmIKKε, for which mutations have not been
described. DmIKKε is a counterpart to IKKε and related ver-
tebrate kinases, which transduce signals to NF-κB in T-cell
activation and perhaps other processes [26•–29•].

The Dorsal/Dif pathway also differs from the NF-κB path-
way in the adaptor proteins that act downstream of the
receptor. MyD88 contains a TIR domain that interacts with
the TIR domain of Toll family receptors, whereas Tube
protein has a novel repeat that mediates binding to Dorsal
[30–32]. Furthermore, although MyD88 and Tube interact
with IRAK and Pelle, respectively, via interaction motifs
termed death domains [33,34,35••], the binding of Tube to
Pelle involves sequences outside the death domain that are
not conserved in either MyD88 or IRAK [35••].

A remaining difference observed in the Drosophila system
is an apparent bifurcation in the dorsoventral pathway,
such that there is signaling from Toll, Tube, and Pelle not
only to Cactus but also to Dorsal. Specifically, a nuclear
concentration gradient of Dorsal persists, albeit in an
attenuated form, in the absence of either Cactus or a
Dorsal–Cactus interaction [24,36•]. This residual gradient
might reflect regulation of Dorsal by Relish, the only
Drosophila protein other than Cactus with an IκB-like
domain (see below). It seems more likely, however, that
the observed signal-dependent phosphorylation of Dorsal
and the binding of Pelle to Dorsal in embryos reflect a
pathway for Cactus-independent signal transduction to
Dorsal [31,37,38].

Variation 2: Drosophila anti-bacterial responses
Drosophila mount an immune response not only against
fungi but also against bacteria, inducing expression of
anti-bacterial peptides such as Diptericin, Attacin, and
Cecropin [39•]. The pathway leading to Diptericin
induction is distinct from the anti-fungal pathway
because it is unaffected by mutations in dorsal, Dif, 
or the genes that regulate these factors [18,40•].
Furthermore, a number of genes specific for this path-
way have been identified, including the imd (immune
deficiency) locus and the ird (immune response deficient)
genes [39•,41,42] (Table 1).

The target of the imd/ird pathway is Relish, a p105 homo-
logue active in humoral immunity [43••]. Like the
mammalian p105 protein, Relish contains both a Rel
homology domain and a set of IκB-like ankyrin repeats. A
null mutation in relish renders flies highly susceptible to
bacterial infection and eliminates induction of diptericin in
response to infection. Surprisingly, processing of Relish is
quite different from that of p105. Whereas signaling in
mammalian cells leads to proteasome-mediated cleavage of
p105 and degradation of the IκB-like domain [44], signal-
dependent cleavage of Relish is proteasome-independent
and results in stable Rel and IκB-like fragments
(D Hultmark, personal communication).

DmIKKβ and DmIKKγ, dispensable in fighting fungal
infection, are both active in the anti-bacterial immune
response. Mutations in either locus block Diptericin
induction but have no effect on Drosomycin expression
(J Hoffmann, personal communication; K Anderson, per-
sonal communication). Furthermore, an activated complex
of DmIKKβ and DmIKKγ phosphorylates Relish in vitro
(N Silverman, D Hultmark, T Maniatis, personal commu-
nication). Given the involvement of an IKK complex, it
seems likely that the Diptericin pathway will also involve
the Drosophila homologues of TRAF6 [45,46] and MyD88
(S Wasserman, unpublished data).

At least one Tlr protein, 18-Wheeler, is expressed in the
larval fat body, the focus of the humoral immune response,
and appears to be active in the Drosophila antibacterial
response [47]; however, because diptericin expression is
relatively unaffected in an 18-wheeler mutant, it is likely
that further genetic analyses will place additional Tlr pro-
teins in the imd/ird pathway. Given that Drosophila encodes
a repertoire of eight Toll family receptors (see Table 1),
there is the potential, as in mammals, for substantial speci-
ficity in pathway activation and function.
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Table 1

Components of Toll signaling pathways in Drosophila.

Antifungal and Antibacterial Accession nos.†/
Dorsoventral (Diptericin) other names

Receptors
Toll + –
18-wheeler – +
Toll-3 MstProx
Toll-4 CG18241
Toll-5 Tehao
Toll-6 CG7250
Toll-7 CG8595
Toll-8 Tollo

Adaptors
Tube + –
DmMyd88 CG2078
dTraf1
dTraf2

Kinases
Pelle + –
DmIKKβ – + Ird-5, dLak, Ik
DmIKKγ – + Kenny
DmIKKε Ik2

Effectors/inhibitors
Cactus + –
Dorsal +* –
Dif +* –
Relish – +

For each gene for which mutations have been characterized, symbols
indicate whether the gene is required (+) or not (–) for the pathways listed.
*Dif is required for the antifungal pathway in adults; Dorsal is required for
the dorsoventral pathway in embryos. These two loci are redundant for the
antifungal response in larvae [40•]. †The accession numbers and alternate
names are archived in Flybase (http://flybase.bio.indiana.edu/).



Although the imd/ird pathway of Drosophila bears substan-
tial similarity to that of mammals, the mechanism of signal
transduction is most likely different. In the NF-κB path-
way, the IRAK kinases are necessary for signal
transduction [48••,49]. In the imd/ird pathway, however,
Pelle, the only IRAK ortholog in flies, is not required for
Diptericin induction.

Unlike the diptericin gene, for which the imd/ird pathway is
both necessary and sufficient to achieve activation, most
Drosophila antibacterial genes require more than one input
for full induction [39•]. For example, both the spätzle/Toll
and imd/ird pathways are required to induce the defensin
gene. As transfection of different combinations of Dorsal,
Dif, and Relish drives expression of distinct sets of
immune factors [50], it seems likely that signals from par-
ticular Toll pathways, alone or in combination, activate
specific homo- and heterodimers of the three Drosophila
Rel proteins (Figure 2).

Further variations
The extraordinary breadth of Toll pathway conservation
became apparent when it was found that the N gene of
tobacco was related in sequence to Toll and that many
additional plant disease resistance (R) genes encode Pelle
homologues, such as Pto [51,52]. The basis of this conser-
vation was unclear at first because the N gene product and
other plant Toll homologs were predicted to be cytoplas-
mic, containing LRR repeats and TIR domains, but no
transmembrane domain. The question as to how such pro-
teins function in pathogen recognition was answered with
the finding that both viruses and bacteria introduce patho-
genic gene products directly into plant-cell cytoplasm [53].

Given that no plant Rel homologues have been identified,
the plant LRR–TIR and Pelle-like R proteins most likely

function in signaling cascades quite divergent from their
Drosophila and human counterparts. Indeed, to the extent
that there is any evidence ordering these genes in a path-
way, the Pelle-like kinases appear to act upstream of the
LRR–TIR proteins [54••]. Consistent with such an order
of action, Pto appears to participate directly in pathogen
recognition, binding to the Pseudomonas avrPto protein via
activation loop sequences that are essential for
Pseudomonas resistance [52].

Like plants, the nematode Caenorhabditis elegans appears to
encode Toll pathway components but no Rel-like proteins
[55]. C. elegans also differs from other animals in having
only a single Tlr gene, in addition to single genes belong-
ing to the Pelle, IκB, and TRAF families. As at least three
of these four genes are dispensable for normal morpholog-
ical development, the pathway has been presumed to
function in immunity. Assays with known pathogens, how-
ever, have not revealed an immune deficiency in worms
lacking the function of any of these loci.

Recent studies in both mammals and flies have identified
several new proteins in Toll signaling pathways. The Tollip
protein in mammals binds to IRAK and apparently acts to
inhibit signal transduction prior to cytokine stimulation [56•];
a readily recognizable homolog exists in worms, but not flies.
In contrast, a mammalian TRAF6 interactor termed ECSIT
(evolutionarily conserved signaling intermediate in Toll
pathways) has a Drosophila homologue which binds to
dTRAF1, the fly TRAF6 counterpart [57•]. Furthermore,
dTRAF1 also interacts with Pelle, which binds not only to
Tube and Dorsal, but also to Toll and Pellino, a novel fly pro-
tein [46,58,59]. There are, thus, clearly additional networks
of interactions that need to be sorted out.

Coda: perspectives
In recent years, we have grown used to conservation in
mechanistic detail in concert with functional diversity. The
Wingless and Ras signaling cassettes are highly conserved
at the biochemical level but function in a diverse set of
developmental processes [4,5]. In the case of the Tlr path-
ways, the opposite is true: function is largely constant but
the pathways have diverged. The contrast is apparent even
at the level of individual components — sequence identi-
ty between Drosophila and human components of the Toll
pathway is in general much lower than that of components
in the Wingless or Ras pathway. 

Conserved function and diverged mechanism makes sense
for a pathway that evolved to carry out immune function.
Distinct pathogens present distinct problems for infected
organisms, synthesizing diverse sets of macromolecules and
disrupting growth and metabolism by disparate routes. In
this context, variations in the Toll-signaling pathway could
be means of linking specific ligands to specific responses.
How such immune pathways were co-opted for develop-
ment in Drosophila, and perhaps other organisms [60],
remains an open and fascinating evolutionary question.
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Figure 2

Model for combinatorial control of antimicrobial genes in Drosophila.
Homo- and heterodimers of Dif and the amino-terminal domain of
Relish differ in their affinity for the κB sites governing expression of the
loci encoding Drosomycin, Defensin, and Diptericin. As a result,
activation of the spätz/eToll and imd/ird pathways singly or in
combination provides a means for the independent regulation of these
three antimicrobial genes. If Dorsal as well as additional Tlr pathways
are included in the scheme, up to six sets of such genes can be
differentially regulated.
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