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Nomenclature for HKT transporters, key determinants
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Postal 510-3, Cuernavaca, Morelos 62250, México
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Salinity tolerance inmany plants is inversely related to the
extent of Na+ accumulation in the shoot, notably in the

neighbor-joining, UPGMA (Unweighted Pair Group
Method with Arithmetic Mean) and maximum parsi-
major cereals such aswheat and rice [1]. InArabidopsis and
rice, there is evidence indicating a central role for members
of the HKT gene family of Na+ and Na+/K+ transporters in
controlling Na+ accumulation [2–6] and, thus, in determin-
ing salinity tolerance. However, in heterologous systems,
whereas the wheat TaHKT1 protein transports both Na+

and K+, AtHKT1 is more Na+-specific [7,8] and their
sequences are not particularly closely related. Recent stu-
dies suggest that members of the HKT gene family in rice
and Arabidopsis are expressed in xylem parenchyma cells
and protect leaves from salinity stress by removing sodium
from the xylem sap [5,6]. Given the wealth of sequences
becoming available and the potential for confusion inherent
in the current nomenclature, it is timely to propose an
internationally agreed nomenclature for the family.

Phylogenetic trees of publicly available full-lengthHKT
coding sequences or HKT amino acid sequences show that
the gene family splits into two major branches (Figure 1).
The major division is stable, as are the clusters of closely
related genes, although the precise relationships between
gene clusters in the larger subfamily 1 vary slightly
with the analysis method used [e.g. minimum-evolution,
or: Tester, M. (mark.tester@acpfg.com.au).
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mony]. The twoHKTsubfamilies can also be distinguished
on the basis of gene organization (Figure 2). Although
allHKT genes contain two introns, these are significantly
larger in group 1 than in group 2 genes ( p = 0.0085,
Mann–Whitney test).

HKT genes from dicot species fall within the first major
subfamily. By contrast, the nine HKT genes found in rice
[9] are more diverse and divide between the two major
branches. A search of publicly available EST sequences,
supplemented by targeted cloning of furthermembers from
wheat, barley and sorghum (J.D. Platten and O. Cotsaftis,
unpublished) indicates that this family structure is general
for many graminaceous species.

It is proposed that the clade containing sequences from
dicot species plus the rice OsHKT4– OsHKT8 genes [9] be
designated subfamily 1 (Table 1). Thus, for example,
AtHKT1 becomes AtHKT1;1 and OsHKT4 becomes
OsHKT1;1. The second clade, which so far only contains
genes from graminaceous species, is designated subfamily
2. Within these two clades, we propose that genes within a
species would be numbered according to the order in which
they were identified (or, for those already named, in the
current numbering order). For example, OsHKT9 will now
be namedOsHKT2;4. The revised nomenclature is outlined
in Table 1.
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Figure 1. Unrooted minimum-evolution tree of known full-length protein

sequences encoded by HKT genes from higher plants showing the division

into two major clades. Saccharomyces cerevisiae (Sc) TRK1 and TRK2 genes

(Accession numbers AAA34728 and AAA35172, respectively) are included as an

out-group. Abbreviations: At, Arabidopsis thaliana; Ec, Eucalyptus camaldu-

lensis; Hv, Hordeum vulgare; Mc, Mesembryanthemum crystallinum; Os, Oryza

sativa; Pa, Phragmites australis; Pt, Populus trichocarpa; Sm, Suaeda maritima;

Ta, Triticum aestivum. The tree was constructed using MEGA3 [15] with a

random number seed of 92 702 and 10 000 bootstrap replicates. The numbers

indicate percentage bootstrap support. The scale bar indicates 0.2 substitutions

per site.

Figure 2. The two HKT subfamilies have different intron sizes. (a) Structures

from the start-to-stop codon of some plant HKT genes for which genomic DNA

sequences are available. Coding sequences (exons) are depicted in white, introns

in blue. All HKT genes contain two introns, but they are significantly longer in

group 1 than in group 2 genes ( p = 0.0085, two-tailed Mann–Whitney test).

(b) Building blocks of plant HKT genes for which genomic DNA sequences

are available. Although there are no differences in exon sizes, group 1 genes

(white; n = 5) contain longer introns than group 2 genes (blue; n = 4; *, p = 0.016,

two-tailed Mann–Whitney test).
Thisnaming systemhas theadvantages of clearlyassign-
ing membership within the gene family to the two function-
ally and evolutionarily distinct clades – for different
members of the family within a species and for similar
members of the family from different species. Thus,
sequence differences between TaHKT1 (TaHKT2;1) and
AtHKT1 (AtHKT1;1) are supported by their separation
between the two clades, whereas the similarities between
www.sciencedirect.com
TaHKT1 (TaHKT2;1) and OsHKT2 (OsHKT2;2) are more
clearly indicated. Note that the second number is solely to
differentiate genes within a species, and does not reflect
relationships – thus, the name TaHKT2;1 does not indicate
a relationship closer to OsHKT2;1 than to OsHKT2;3.

The division of the family into two major branches is
associated with a glycine/serine substitution of a residue
predicted to be in the first pore loop of the protein [7,9]. All
members of subfamily 1 have a serine at this position,
whereas members of subfamily 2 (except for the likely
revertant OsHKT2;1) have a glycine. Functional analyses
of the TaHKT2;1, AtHKT1;1 and rice genes suggest that
this particular residue could play a central role in deter-
mining the Na+ selectivity of the transporter [7,9,10],
results consistent with those from the related bacterial
Na+-dependent K+ transporter KtrAB [11]. Therefore, the
division into two major subfamilies might reflect an impor-
tant division of function. There could be other structural
determinants of selectivity, which might explain possible
effects on selectivity in heterologous systems of the N-
terminus [12] and the K+ transport activity of HKTs from
Eucalyptus [13,14].

Furthermore, the tree suggests that dicot plants lack
members of subfamily 2. The function of these subfamilies
and how these genes contribute to salinity tolerance and
other aspects of whole-plant function requires further
investigation.

genbank:AAA34728
genbank:AAA35172
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Table 1. Revised nomenclature for HKT family members

Previous name Nucleotide Accession no. Locus identification no. Protein Accession no. Revised name

AtHKT1 AF237672 At4g10310 AAF68393 AtHKT1;1

McHKT1 AF367366 – AAK52962 McHKT1;1

McHKT2 AY231175 – AAO73474 McHKT1;2

PtHKT1 grail3 LG_XVIIIa – a PtHKT1;1

EcHKT1 AF176035 – AAF97728 EcHKT1;1

EcHKT2 AF176036 – AAD53890 EcHKT1;2

SmHKT1 AY530754 – AAS20529 SmHKT1;1

OsHKT4 AJ491816 Os04g51820 CAD37183 OsHKT1;1

OsHKT5 AJ506745 – b,c OsHKT1;2

OsHKT6 AJ491818 Os02g07830 CAD37185 OsHKT1;3

OsHKT7 AJ491853 Os04g51830 CAD37197 OsHKT1;4

OsHKT8, SKC1 AK108663 Os01g20160 BAB93392 OsHKT1;5

TaHKT1 U16709 – AAA52749 TaHKT2;1

HvHKT1 AM000056 – CAJ01326 HvHKT2;1

PaHKT1 AB234304 – BAE44385 PaHKT2;1

OsHKT1 AB061311 Os06g48810 BAB61789 OsHKT2;1

OsHKT2 AB061313 – BAB61791 OsHKT2;2

OsHKT3 AJ491820 Os01g34850 CAD37187 OsHKT2;3

OsHKT9 AJ491855 Os06g48800 CAD37199 OsHKT2;4
aFrom the poplar genome project, at http://genome.jgi-psf.org.
bTranslated from nucleotide sequence.
cBecause OsHKT1;2 is a pseudogene in rice cv. Nipponbare, internal stop codons were overridden to create a full-length amino acid sequence
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