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1  Introduction

Eukaryotic cells are the dominant production hosts in the
therapeutic protein industry, and contribute substantially
to the $140 billion dollars in annual sales [1]. Common
hosts, such as Chinese hamster ovary (CHO) cells, are par-
ticularly desirable for their capacity to fold and make
human-compatible post-translational modifications on
recombinant proteins [2]. As the demand for improved
quantity, purity, and quality in biotherapeutic products
continues to increase, novel strategies for engineering
efficient eukaryotic cells become more necessary. Tradi-

tional strategies for increasing protein titers and improv-
ing cellular performance during culture relied primarily on
mutant screens and bioprocess optimizations. For exam-
ple, culture temperature can be lowered or culture media
can be varied to identify conditions resulting in high titers
[3–5]. Some initial attempts to utilize metabolic networks
on eukaryotic cells for metabolic engineering used
dynamic modeling for estimating flux distributions [6–8].
However, with the advent of high throughput “omic”
technologies and the application of computational meth-
ods in systems biology, it is now possible to elucidate the
molecular basis of eukaryotic cell physiology and produc-
tion capabilities at the genome-scale [9, 10]. Such efforts
involve reconstructed and refined genome-scale metabol-
ic network models [11, 12]. These models enable the
quantitative analysis of intracellular metabolic fluxes “in
silico” (i.e. in a computer simulation) and the prediction of
phenotype from genotype [13, 14]. Such predictions are
possible since all precursors needed for synthesizing cell
biomass and maintaining cell viability are produced
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through metabolic pathways. Thus, the metabolic fluxes
directly influence cell physiology and their quantification
is of great importance to bioprocess engineering [15, 16].
Among the different methodologies, the constraint-based
reconstruction and analysis (COBRA) approach has
proven quite useful for studying cell metabolism at the
genome scale, using algorithms such as flux balance
analysis (FBA). Detailed reviews and tutorials on COBRA
and FBA are available for the interested reader [17, 18]. In
this review we will cover the fundamental goals of sys-
tems biotechnology as an emerging field and of COBRA
as a modeling framework. Then, we will highlight several
research efforts that applied these models to characterize
and engineer eukaryotic cell metabolism for bioprocess-
ing. 

2  Systems biotechnology 
and metabolic models

2.1  Introduction to genome-scale reconstructions 

Systems biotechnology combines computational and
experimental approaches to comprehensively describe
the biomolecular mechanisms relevant to bioprocessing
[19]. This approach frequently utilizes high-throughput
omics data to study and quantify the function of specific
pathways (e.g. using pathway maps [20–22], metabolic
networks [23], or other interaction databases). In this con-
text, genome-scale metabolic networks contain a com-
prehensive collection of all known biochemical (i.e. meta-
bolic) information of a specific organism [24, 25]. These
networks represent a structured database of the totality of
known metabolic processes that take place in the cell,
including the metabolites involved, the enzymes catalyz-
ing each of the reactions and the genes that code for the
necessary machinery for these processes (Fig. 1). With the
proliferation of genome sequencing efforts, many meta-
bolic network reconstructions have been built including
eukaryotic genome-scale models that are relevant to
industry and medicine [26–28]. These include the fila-
mentous fungi Saccharomyces cerevisiae [29] and Pichia
pastoris [30] (for industrial applications) as well as Homo
sapiens [31] and Mus musculus [32] (which are important
models for medicine and drug design). 

Biotechnological applications of genome-scale models
include metabolic engineering [19], phenotype prediction
and characterization [33], identification of genetic targets
for cellular engineering [34], and interpretation of high-
throughput omics data [35]. Metabolic engineering of pro-
duction strains has also been facilitated by in silico pre-
dictions of gene deletions, alternative metabolic path-
ways, metabolic coupling of growth rate with secretion of
target molecules, and estimations of minimum nutrients
in culture media for optimizing growth [36, 37]. Among all
the different types of predictions done with metabolic

models, one of particular interest to industrial biotechnol-
ogy is the computation of maximum yield of a target mol-
ecule from a given substrate [28]. 

2.2  Constraint-based reconstruction 
and analysis of metabolic networks

In order to capture the biologically meaningful pathway
usage, or flux distributions, of a metabolic network under
a given condition in silico, it is valuable to use approach-
es that apply known physicochemical constraints, such
as mass balance and thermodynamics of each reaction.
The constraint-based reconstruction and analysis
(COBRA) approach uses such constraints to narrow
down the range of feasible flux distributions to recapitu-
late real pathway usage. COBRA further provides a
diverse range of analytical tools for constructing and ana-
lyzing genome-scale metabolic networks [38]. The net-
works are reconstructed by enumerating all biochemical
reactions in the organism of interest. Each reaction can
be described mathematically using a stoichiometric
matrix, which contains the stoichiometric coefficients for
each metabolite (rows in the matrix) in each reaction
(columns in the matrix, see Fig. 1B). To analyze stoichio-
metric networks and quantify the metabolic flux distri-
bution of a particular phenotype, COBRA models often
assume a steady-state flux and apply fundamental con-
straints derived from mass conservation and thermody-
namics [39]. These constraints can allow for identifica-
tion of steady-state flux distributions that are thermody-
namically feasible and biologically meaningful. Such fea-
sible flux distributions form a solution space, which is a
mathematical space containing all possible combina-
tions of steady state reaction fluxes in the metabolic net-
work (Fig. 2, Solution space). Once the solution space is
defined, the next step is to choose an objective function,
which is a particular reaction whose flux is sought to be
maximized or minimized (Fig.  2, Objective and con-
straints). Finally, by applying linear programming algo-
rithms [40], a particular solution that satisfies both the
constraints and the objective function is computed,
which provides a prediction of the flux level through each
reaction. This optimization technique is commonly
called flux balance analysis (FBA) and it is a fundamental
COBRA method [41].

In short, FBA consists of a linear programming prob-
lem that requires: (i) the set of all biochemical reactions in
the system (in the form of a stoichiometric matrix); (ii) an
objective function; and (iii) a set of constraints that define
the conditions under which the system is allowed to oper-
ate. Here we first describe the method conceptually with
a simple optimization problem of maximizing the area of
a rectangle, and then relate this to modeling metabolism
(Fig. 2). When optimizing the area of a rectangle given a
constrained perimeter, the rectangle is the system in
question and this system can be described with two inde-
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pendent variables: the width a and the length b. The area
of the rectangle in this case is the objective function,
which is computed by taking the product of a and b. We
can construct an infinite number of rectangles by varying
the values of a and b. However, the constraint requiring
the perimeter of the rectangle to be the value L shortens
the range of possible values that both the length and the
width can take. Therefore, we have a solution space, and
we seek to identify the values of a and b that maximize the
area of the rectangle. This optimal solution is obtained
only when a and b are equal (i.e. when they form a square;
Fig. 2, Optimal solution).

For metabolic models, a and b are reaction fluxes of
the metabolic network. The perimeter and the area of the
rectangle are also fluxes of the system since their values
depend on a and b. However, we have set a constraint
upon the perimeter as it can only take a constant value (L).

The set of all possible rectangles with perimeter L defines
the solution space. Finally, the area of the rectangle rep-
resents the objective function that we seek to maximize
while satisfying the given constraint. In metabolic mod-
els, a common objective function is growth (represented
by the biomass function, a pseudo reaction in which all
metabolites required for the synthesis of cell parts are
consumed [42]). The constraints in metabolism include
the directionality of the biochemical reactions or the
allowed rates of substrate uptake (see bottom panel in
Fig. 2). 

COBRA methods have been used and implemented to
study metabolism for over 30 years now and the universe
of possible applications is quite vast [16]. Many applica-
tions, including strategies for interpreting high-through-
put omics data in the context of metabolic networks, have
been previously reviewed [14, 43]. 
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Figure 1. General framework for using genome-scale reconstructions in systems biotechnology. (A) First, the reconstruction is assembled from the organ-
ism-specific parts list (e.g. genes, proteins, metabolites, and reactions). (B) The metabolic reactions in the cell are described mathematically in a stoichio-
metric matrix, which contains the stoichiometric coefficients for each metabolite (row) in each reaction (column). (C) The stoichiometric matrix can be rep-
resented graphically as a metabolic network. (D) From the metabolic network, a system representation (i.e. metabolic model) of the cell can be obtained by
identifying which metabolites are consumed or secreted, as well as the biomass components the cell needs to produce for growing (e.g. ribosomes, pro-
teins, lipids, nucleic acids, etc.). (E) By using computational methods such as constraint-based analysis, different phenotypes of interest can be computed
by simulating gene knock-outs or nutritional limitations in the media (represented by the different coloring patterns in the networks). (F) Finally, the
results from these predictions serve as the basis for engineering the metabolism of the host cell towards a desired phenotype.
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3  Applications of metabolic models in
systems biotechnology for bioprocessing

Metabolic models and stoichiometric equations have
been used to gain a systemic understanding of how
metabolism dictates the phenotype of various eukaryotic
cells in four distinct applications. These include media
optimization (section 2.1), characterization of phenotypes
under different culture conditions (section 2.2), improve-
ment of cell density (section 2.3), and maximization of pro-
tein yield (section 2.4). A summary of these examples is
outlined in Table 1.

3.1  Identifying effective cell culture media
supplementations

The metabolic phenotype of mammalian cell systems
often involves high levels of glucose and glutamine
uptake and excessive lactate secretion [44]. Thus, mam-
malian cell culture media include nutrients that promote
both cell growth and the synthesis of the target recombi-
nant protein. Some nutrients, like essential amino acids,
vitamins and inorganic salts, cannot be synthesized from
the basic carbon (e.g. glucose) and nitrogen (e.g. gluta-
mine) sources. Other nutrients can be synthesized from
basic nutrient sources and their supplementation pre-
vents the excessive accumulation of harmful metabolic
byproducts (e.g. ammonia in the case of nonessential
amino acids). Based on this idea, Xie and Wang formulat-
ed a stoichiometric metabolic model to study the nutri-
tional demands for cell growth and protein production in
mammalian cell cultures [45]. Using measured cell com-

position data, the model allowed them to determine the
coefficients of a stoichiometric equation governing cell
growth. The stoichiometric equation accounts for energy
production and synthesis of carbohydrates, lipids, nucleo -
tides and proteins. The researchers subsequently used
these results to develop a new medium that allowed for a
dramatic improvement in product titers when used in fed-
batch cultures of a CRL-1606 hybridoma cell line [37].
Years later, Selvarasu et al. brought this in silico approach
for the determination of medium supplementation to the
next level by incorporating multivariate statistical analy-
sis and data preprocessing [46]. This allowed for the infer-
ence of optimal amino acid concentrations that could be
incorporated into the nutrient medium. Furthermore,
some negative correlations between non-essential amino
acids and cell growth were found, suggesting a way to
increase cell viability by reducing the concentrations of
some media components [5, 47].

Another common media supplementation in CHO cell
cultures includes plant-derived protein hydrolysates from
soy, rice or wheat [48]. These supplements support cellu-
lar growth and productivity as they serve as raw materi-
als for protein biosynthesis. However, plant-derived pro-
tein hydrolysates suffer from high compositional variabil-
ity which translates into unpredictable culture perform-
ance and final product quality. Lee et al. investigated this
issue from a systems biology perspective to elucidate the
effects of wheat hydrolysates’ composition on the meta-
bolic flux distribution of CHO cells [49]. Based on a 
CHO-320 metabolic network [50], the researchers con-
structed a constraint-based metabolic model and applied
FBA to estimate the metabolic fluxes in cultures with dif-
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Figure 2. Exemplification of two optimization problems. Two examples of optimization problems are shown here to illustrate flux balance analysis. The
first example appears in the context of Euclidean geometry (top row) and the second in the context of metabolic networks (bottom row). In the small meta-
bolic network shown, x1–x4 represent intermediate metabolites, B represents produced biomass and W the secreted waste products. The arrows represent
the reactions that connect the metabolites in the network and their width is proportional to the flux.
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Table 1. Overview of systems biotechnology applications of stoichiometric equations and metabolic models presented in this review.

Study Organism/Cell line Aim(s) of study Summary of key results

Xie and Wang CRL-1606 To construct a simplified stoichiometric Good agreement between model predictions 
1996, [37] network that allows for determination and experimental data covered in literature. 

of material balances in animal cell Predictions on media supplementations turned 
metabolism and potential nutrient out correct in experiments.
supplementations in culture media.

Lee et al. GS-CHO and To elucidate the effects of chemical The amino acid and trace element content of 
2014, [49] CHO-320 composition from plant-derived wheat hydrolysates induces important variations

supplements on the metabolic flux in central and amino acid metabolism of 
distribution. mammalian cells. Flux distributions with higher 

cell growth rates were found to have highly active
glycine and serine metabolism.

Ivarsson et al. CRL-1606 To gain a mechanistic insight into Significant physiological differences between 
2015, [55] the effect of pH on mammalian cell metabolic flux distributions under two pH 

metabolism. conditions were identified by applying FBA to 
a metabolic model. It was also found that 
the TCA cycle is regulated by gluconeogenic 
enzymes at unfavorable pH levels.

Martínez et al. CHO-XL99 To use a metabolic network to under- The main differences before and after the meta-
2013, [58] stand the metabolic fluxes that trigger bolic switch were described in terms of ATP 

a metabolic switch in lactate uptake usage and redistribution through the core 
and secretion. metabolic pathways.

Selvarasu et al. in-house IgG- To develop a framework for integrating Cell-specific biomass composition may lead to 
2012, [59] producing CHO metabolomic data into metabolic erroneous in silico predictions if not properly 

cell line and networks to gain a mechanistic insight calculated. Flux distributions of pentose 
CHO M250-9 of CHO cell physiology during fed-batch phosphate, amino acid and fatty acid biosyn-

culture and identify the metabolite profile thetic pathways are higher during initial expo-
in different growth phases. nential growth phase compared to late exponen-

tial growth phase.

Carinhas et al. GS-CHO To contextualize the effects of sodium Computational predictions agree very well with 
2013, [64] butyrate on cellular metabolism in a experimental data and GS-CHO cell lines’ 

stoichiometric network in the context metabolism was found to be characterized by 
of low- and high-producing cell lines. high asparagine uptake and higher metabolic 

efficiency than other CHO cell lines. Butyrate 
treatment has a marked effect on increasing 
biosynthetic activity during stationary phase.

Bernal et al. Spodoptera To understand the cell density drop Redox homeostasis and ATP synthesis, but not 
2009, [66] frugiperda Sf9 cells effect observed in high concentration byproduct accumulation nor nutrient depletion, 

cultures of insect cells infected with a have a drastic change after infection, which 
baculovirus expression vector for translates into cell growth arrest and higher 
recombinant protein production. conversion of pyruvate to acetyl-CoA.

Carinhas et al. Spodoptera To optimize protein production of insect It is demonstrated that supplementation of 
2010, [69] frugiperda Sf9 cells cells and bypass the cell density drop pyruvate and α-ketoglutarate has a six- to 

effect by identifying nutrient supplemen- seven-fold increase in yield.
tations from a metabolic network.

González et al. Saccharomyces To study the metabolic burden that Protein secretion causes a redistribution of the 
2003, [70] cerevisiae heterologous protein production imposes carbon source in the metabolic network of yeast 

on cell growth. and thus limits growth.

Nocon et al. Pichia pastoris To engineer central metabolism of The genome scale model used in this study [67] 
2014, [74] X-33-hSOD P. pastoris to enhance protein production accurately predicts flux changes caused by 

by identifying beneficial mutations recombinant protein secretion. About 50% of the 
(i.e. gene knockouts, gene overexpression) single gene mutations significantly improved 
via in silico predictions. recombinant protein production.
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ferent wheat hydrolysate supplementations. Then, by
using principal component analysis (PCA) and partial
least squares (PLS), they interpreted the results obtained
from FBA and found important characteristics in the cen-
tral and amino acid metabolic pathways that varied
according to the amino acid composition of wheat
hydrolysates. These results confirm the usefulness of con-
straint-based analysis in determining the metabolic reg-
ulation in cell cultures under different media supplemen-
tations, which have the potential to guide rational design
of culture media composition and appropriate supple-
mentations.

3.2  Characterizing cell physiology under different
culture conditions

When cultured mammalian cells grow with excess glu-
cose, lactate dehydrogenase activity increases, leading to
a high turnover of intracellular pyruvate and subsequent
secretion of lactate into the extracellular medium. As lac-
tate accumulates, both cell growth and cell productivity
decrease [51] and certain enzymes in the glycolytic path-
way are downregulated [52]. Therefore, an important
objective in bioprocess control is to reduce lactate secre-
tion in mammalian cell culture. To achieve this, tech-
niques have been proposed to modulate metabolic path-
ways via genetic mutations [53] or media optimization
[54]. In a recent work [55], however, Ivarsson et al. man-
aged to limit lactate formation and consumption by con-
trolling media pH in CRL-1606 hybridoma cell cultures.
The researchers applied FBA to a metabolic network (con-
structed by Mulukutla and colleagues [56]) in order to see
the effect that pH had on lactate metabolism. A reaction
for ATP production was chosen as the objective function
and thus it was maximized in their constraint-based sim-
ulations. The results of this study led to the conclusion
that hybridoma cells become more energy-efficient and
synthesize more monoclonal antibody at low (6.8) pH lev-
els. The authors were able to identify the consequences of
pH on intracellular fluxes, particularly the activation of
gluconeogenic enzymes at an unfavorable pH level of 7.8
that regulate the TCA cycle. Importantly, these conse-
quences could not be captured in gene expression analy-
sis under both pH conditions, which highlights the rele-
vance of looking at metabolic fluxes through computa-
tional models.

One limitation of mammalian cell cultures is that cells
sometimes experience a metabolic switch, leading to an
inefficient phenotypic state, e.g. when lactate is secreted
while glucose is highly consumed [56]. To understand the
mechanism of this phenomenon in the context of meta-
bolic fluxes, Martínez and colleagues derived a CHO XL99
cell metabolic model from a previous mouse genome scale
model [57] and performed FBA to yield a detailed analysis
of the differences in flux distributions between two phe-
notypic states: lactate secretion (known to be inefficient)

and lactate consumption (which was surprisingly found
to be more energy efficient) [58]. For example, by com-
paring the fluxes in key metabolic pathways (TCA, gly-
colysis), the researchers found that the lactate-consum-
ing phenotype of CHO cells represents a more efficient
state, producing about six times more ATP (80% destined
to cell maintenance and 20% to biomass production) com-
pared to the high-lactate-secretion phenotype. The
results of this study highlight the power of metabolic
models to interpret the consequences of phenotypic
changes on cellular metabolism. 

In another study, Selvarasu and colleagues presented
an integrated framework to characterize the physiology of
CHO cells in fed-batch cultures [59]. Their framework con-
sists of combining fed-batch culture data, metabolomics,
and in silico metabolic network modeling. This led to an
in depth study of three metabolic pathways associated
with limitation of CHO cell growth. One surprising find-
ing is reflected in the significant differences in biomass
composition (i.e. fraction of lipids, amino acids, and
nucleic acids that make up cell biomass) across five dif-
ferent CHO cell lines that the authors were able to ana-
lyze. This emphasizes the need for careful quantification
of a cell line being studied, since accurate cell biomass
composition is important for many modeling uses, such as
media optimization [60–62]. Otherwise, models may lead
to spurious conclusions if biomass examination is not
properly realized.

A common strategy used in CHO cell cultures to stim-
ulate over-expression of the target protein involves treat-
ing the cells with sodium butyrate, a histone deacetylase
inhibitor that arrests cell growth but sustains recombi-
nant protein productivity [63]. Although this technique
increases the specific productivity of CHO cells, it also
increases the risk of apoptosis dramatically and can com-
promise the entire bioprocess. Metabolic models can be
used to address pertinent questions on how to optimally
culture CHO cells under sodium butyrate treatment. Car-
inhas et al. [64] realized precisely this in the context of a
metabolic network (117 reactions, 24 metabolites) of glu-
tamine synthetase (GS)-CHO cells. By integrating
exometabolomic data from different clones at specific
growth phases with a metabolic network, the researchers
characterized important metabolic trends of GS-CHO
cells that influence metabolic transitions in high- and low-
producing CHO cell cultures under control and butyrate
treatment conditions. Specifically, this study reveals the
metabolic efficiency of GS-CHO cells during the transi-
tion from exponential to stationary growth, and it also
demonstrates a differentiated nitrogen metabolism of GS-
CHO cells that is characterized by an increased uptake of
asparagine for energy generation.
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3.3  Analyzing the energetic basis of cell density 
to improve cell productivity

Insect cells represent a safe and effective way to produce
heterologous proteins and vaccines with protein yields
above 500 mg of protein per liter [65]. Here, baculovirus
expression vectors (BEVs) are transfected into insect cell
hosts and form a production platform of high volumetric
productivity [66]. However, a common problem with this
system is called the cell density drop effect [67]. This phe-
nomenon refers to a significant reduction of specific pro-
ductivity (i.e. mass of product produced per cell per unit
time) of the insect cells when they have been infected
with the BEV at high cell densities [68]. The cell density
drop effect thus forces one to perform the BEV transfec-
tion at low insect cell concentrations in order to obtain
acceptable titers. To understand what happens to insect
cells’ metabolism before and after BEV infection, Bernal
and colleagues embarked on the mission of constructing
a core metabolic model of the Spodoptera frugiperda Sf9
cell line and performed metabolic flux analysis on the
basis of material balances under both conditions [66].
Their core model consisted of 52 internally balanced
metabolites and 73 reactions, including reactions from 
(i) central metabolic pathways such as glycolysis, the
pentose phosphate pathway and TCA cycle and (ii) reac-
tions that account for the energetic costs of biomass for-
mation and membrane transport. Interestingly, the
results of this study suggest that neither byproduct accu-
mulation nor depletion of nutrients in the culture media
are responsible for the cell density drop effect observed in
insect cell cultures with high density. Nevertheless, this
work sheds light on metabolic regulation occurring in
insect cells after infection with BEVs. These include
changes in redox homeostasis, augmented ATP synthe-
sis, and enhanced consumption of disaccharides after
infection, thus resulting in a higher flux through the con-
version of pyruvate into acetyl-CoA. Based upon these
results, the same research team subsequently altered Sf9
energy metabolism combining experimental and compu-
tational methods, and successfully enhanced protein pro-
duction [69]. Their strategy involved supplementing the
culture media with α-ketoglurate and pyruvate at the
time of infection, which resulted in a six-fold increase in
yield. These two studies highlight the potential of meta-
bolic models in identifying key culture manipulations for
enhancing productivity in a bioprocess, even when the
information required to build a genome-scale network is
not available.

3.4  Characterizing the energetic trends 
that favor protein production

Recombinant protein production in yeast is commonly
increased using different strategies that range from
codon usage to manipulating protein folding processes.

However, increasing protein secretion has a draining
effect on central metabolic fluxes. In one study of S. cere-
visiae metabolism, González et al. presented a core stoi-
chiometric model (81 metabolites, 78 reactions) of a
human superoxide dismutase (SOD)-producing cell line,
and used the model to calculate the metabolic flux distri-
butions in wild type and protein-producing yeast strains
[70]. The fundamental differences between both strains
were captured in this work; even when glucose con-
sumption and ethanol production remained the same, the
key contrasting features lie in the distribution of the car-
bon source to produce biomass (i.e. growth rate). The syn-
thesis of the recombinant SOD protein was linked to high-
er fermentation and lower ATP synthesis compared to the
wild type strain. This study successfully pin-pointed the
energetic trade-off between cell growth and protein syn-
thesis by means of a metabolic model, and thus set the
foundations for subsequent research efforts aimed to
characterize yeast metabolism via comprehensive stoi-
chiometric networks [71].

P. pastoris is a methylotrophic yeast that has drawn
the attention of many systems biologists, since it is an
effective host for heterologous protein production. Sever-
al fully compartmentalized genome-scale metabolic
reconstructions of this organism are now available [30, 72,
73]. Using a genome-scale reconstruction (built by Sohn
and colleagues [72]), Nocon et al. [74] demonstrated sig-
nificant changes in flux distributions of a P. pastoris strain
when forced to produce recombinant protein. They uti-
lized the algorithms “minimization of metabolic adjust-
ment” (MOMA, [75]) and “flux scanning based on
enforced objective function” (FSEOF, [76]) to predict
appropriate genetic modifications (i.e. knockout or over-
expression) that would translate into increased recombi-
nant protein production. From there, the researchers were
able to highlight the most important features of the regu-
latory flexibility of P. pastoris metabolic network to redi-
rect resources for protein production thanks to the pre-
dicted genetic manipulations (see Table 1). This study
goes to show that metabolic models not only provide pow-
erful descriptions of yeast metabolism to enhance secre-
tion of small molecules (e.g. succinate, sesquiterpenes
[77]) but also secretion of macromolecules and polymers. 

4  Challenges and future perspectives

The use of genome-scale metabolic models for enhanc-
ing recombinant protein production is still in its infancy.
As can be inferred from the studies reviewed here, the
discovery of more sophisticated and novel biotechnolog-
ical strategies for enhancing recombinant protein pro-
duction will rely on the refinement and analysis of these
models. Some immediate areas of research that will have
the greatest impact on model-based improvements of
protein secretion are as follow. First, advances that
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address the higher complexity and compartmentaliza-
tion of metabolic processes in eukaryotes will be highly
valuable. Second, the physiology of only a few eukaryotes
(e.g. yeast) has been studied in depth, and continued
efforts in characterizing the more complex metabolism in
higher order organisms (e.g. mouse, hamster) [71] will
enable more detailed and accurate predictions with
genome-scale metabolic models for these protein secre-
tion hosts. Third, technological advances in regard to the
generation of complex high-throughput datasets (beyond
the genome or the proteome) will further benefit future
work with eukaryotes. In particular, the areas of glycobi-
ology and phosphoproteomics, when mapped to meta-
bolic and genetic networks, will help us understand how
to control post-translational modification of products and
better account for key regulatory events in the cell. For-
tunately, at least for CHO cells, there have been several
efforts to generate these types of datasets for the N-gly-
coproteome [78], O-glycoproteome [79] and the tran-
scriptome [80]. 

Major successes in the use of genome-scale models for
metabolic engineering have been achieved in the devel-
opment of production hosts for small molecules [81–83].
Recent expansions of these models have given place to
the next generation of genome-scale models of bacteria,
also known as ME-models (metabolic and gene expres-
sion models). These models incorporate non-enzymatic
events such as transcription, translation [84, 85] as well as
translocation [86], and allow for the estimation of the opti-
mal functional proteome required by the prokaryotic cell
under particular conditions [87, 88]. Although the task
would be enormous, the ME model framework could be
used to expand and refine eukaryotic cell models. Beyond
transcription, translation and signaling, the coupling of
additional process such as protein secretion and associ-
ated post-translational modifications would also greatly
benefit the development of eukaryotic protein production
hosts. For example, protein folding in the endoplasmic
reticulum via chaperone activity imposes an additional
energetic cost (e.g. consuming ATP, sugar nucleotides,
etc.) that is not explicitly accounted in metabolic models
simply because this process cannot be stoichiometrically
described. The same applies to redox balancing when
creating disulfide bonds in proteins or to the impact of
amino acid composition on metabolic flux distributions
[89, 90]. Recent studies are now addressing these issues,
such as Feizi and colleagues [91], who have reconstruct-
ed the first genome-scale model of the yeast protein
secretory pathway. Furthermore, significant progress in
modeling the eukaryotic glycosylation pathways has
been made. These research efforts (reviewed previously
[92, 93]) aim to gain a systemic insight of the glycosyla-
tion capabilities of cell hosts. The computational tools
derived from these efforts could be easily incorporated
into the systems biotechnology toolbox for practical appli-
cations in the near future. As these models continue to be

deployed, it is anticipated that they will prove exception-
ally valuable for engineering the next generation of pro-
tein-producing eukaryotic cell factories. Specifically, they
will help identify targets for genetic modification, improve
cellular metabolic capabilities, optimize media, and inter-
pret high-throughput omics data to elucidate the biomol-
ecular mechanisms controlling recombinant protein pro-
duction yield and quality.
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