
Understanding the genotype–phenotype relationship 
is at the core of the life sciences. For the latter half of 
the twentieth century, the reductionist approaches of 
genetics, biochemistry and molecular biology focused 
on the elucidation of biological components that under-
lie this fundamental relationship. These approaches have  
provided detailed understanding of individual compo-
nents, but they do not address the systemic interactions 
of biological and environmental components that 
underlie phenotypes. Technological advances have now 
enabled high-throughput methods to comprehensively 
characterize biological components simultaneously. The 
cost of such data generation has decreased exponentially 
and the amount of data generated has become more 
abundant, which enables biologists to view and study 
cells as systems of interacting components.

To cope with the rapidly growing number of high-
dimensional data sets, sophisticated data analysis methods  
are needed. Diverse approaches that range from stochastic  
kinetic models to statistical Bayesian networks have 
been applied, and each of these approaches has differ-
ing rationales and advantages (TABLE 1). One of these 
approaches is constraint-based reconstruction and 
analysis that is applied to genome-scale metabolic net-
works. Reconstructed genome-scale metabolic networks 
contain curated and systematized information about the 
known small metabolites and metabolic reactions of a 
cell type, which is based on its annotated genome and 
on experimental literature1,2. Genome-scale metabolic 

networks can be converted to a mathematically con-
sistent format, which is known as the stoichiometric 
matrix (BOX 1). This matrix is the central component of 
a constraint-based model (CBM), which can be queried 
by an ever-growing set of modelling methods3 (BOX 2). 
CBMs have been primarily built for metabolic networks, 
including multicellular metabolic interactions4–8. CBMs 
have also been built for signalling9,10, transcriptional 
regulation11 and macromolecule synthesis12.

This Review illustrates how CBMs have recently 
provided the foundation for formulating genome-scale 
mechanistic predictions of metabolic physiology that 
are now being used in a prospective manner to eluci-
date new biological knowledge and understanding. We 
begin with a brief description of the four-phase history 
of the development of CBM applications. We then pre-
sent studies that show the recent progress of integrat-
ing high-throughput data sets with the mechanistic and 
functional context of CBMs to predict metabolic pheno-
types, and we emphasize the implemented workflows, 
limitations of the approach and opportunities for further 
development.

Foundational developments
Constraint-based analysis has been applied to bio-
chemical reaction networks for more than 25 years. To 
put these developments into context, we exhaustively 
searched the literature using Web of Knowledge to  
collect research articles that use CBMs for interpreting 
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Metabolite overflows
Biological phenomena whereby 
the rate of substrate use by a 
cell for growth is lower than the 
rates of uptake and conversion 
of the substrate, which results 
in production of side 
metabolites (for example, 
acetate in Escherichia coli).

Metabolic fluxes
The rates of turnover or 
movement of metabolites 
through a reaction or a 
pathway.

Objective functions
The particular variables, or 
metabolic reactions, that are 
being maximized or minimized 
for by the linear programme.  
In flux-balance analysis, the 
objective function is often a 
pseudoreaction for biomass 
generation that represents 
cellular growth.

and predicting biological phenotypes. We collected 645 
articles that were published from 1986 to 15 June 2013. 
The articles are available with short descriptions of their 
contributions to the research field at the literature on 
model-driven analysis website hosted by the University 
of California, San Diego Systems Biology Research 
group. An analysis of this literature shows that the  
history of CBMs can be divided into four phases.

Initial studies (1986–1998). CBMs were initially used 
to determine theoretical pathway yields and metabolite  
overflows13,14. Experimental metabolic fluxes and growth 
rates were shown to be consistent with fluxes that were 
computed on the basis of optimization of cellular objective  
functions, including minimal production of reactive oxy-
gen species (ROS) for hybridoma cells15 and maximal 
growth rate for laboratory strains of Escherichia coli 16. 
Concurrently, algorithms — such as Elementary Flux 
Modes17 and Extreme Pathways18 — were developed19 
to exhaustively calculate metabolic pathways in CBMs for 
analysis of network topology20 and for uses in metabolic 
engineering21. The quantitative match between CBM 
predictions and measured cellular behaviour opened 
up the possibility of predicting phenotypes from a  
biochemically reconstructed network.

Building genome-scale networks (1999–2004). The 
ability to sequence whole genomes22 made it possible 
to formulate CBMs at the genome scale and allowed  
representation of the complete metabolic gene content 
in the assessment of phenotypic functions23. Importantly, 
metabolic reactions in a CBM could be directly linked 
to the genotype of the target cell, which allowed predic-
tion of the consequences of gene knockouts24,25. These 
genome-scale models facilitated the study of the global 
organization of cellular behaviour, such as pathway 
structure26, adaptive evolution end points27, metabolic 
fluxes28 and bacterial evolution29,30.

Integrating omic data (2005–2009). As the generation of  
‘omic’ data became cheaper and as larger data sets appeared, 
researchers began to incorporate these data sets into  
CBMs31 (FIG. 1). Initially, the metabolic network was used 
as a scaffold to interpret transcriptional changes32,33 in 
a manner that is similar to pathway enrichment analysis 
(FIG. 1a). Subsequently, omic data were used more directly 
by further constraining individual metabolic reactions  
to increase the context specificity of CBMs34,35 (FIG. 1b).

Maturing to predictive practice (2010–present). 
These efforts resulted in highly curated and validated 

Table 1 | A comparison of modelling and analysis techniques for high-throughput data

Method Model systems Parameterization Typical 
prediction type

Advantages Disadvantages Refs

Stochastic kinetic 
modelling

Small-scale 
biological processes

Detailed kinetic 
parameters

Reaction fluxes, 
component 
concentrations and 
regulatory states

•	Mechanistic
•	Dynamic
•	Captures biological 

stochasticity and 
biophysics

•	Computationally 
intensive

•	Difficult to parameterize
•	Challenging to model 

multiple timescales

106

Deterministic 
kinetic modelling

Small-scale 
biological processes

Detailed kinetic 
parameters

Reaction fluxes, 
component 
concentrations and 
regulatory states

•	Mechanistic
•	Dynamic

•	Computationally 
intensive

•	Difficult to parameterize

107

Constraint-based 
modelling

Genome-scale 
metabolism

Network topology, 
and uptake and 
secretion rates

Metabolic flux 
states and gene 
essentiality

•	Mechanistic
•	Large scale
•	No kinetic 

information is 
required

•	No inherent dynamic or 
regulatory predictions

•	No explicit representation 
of metabolic 
concentrations

3,104

Logical, Boolean 
or rule-based 
formalisms

Signalling networks 
and transcriptional 
regulatory networks

Rule-based 
interaction network

Global activity 
states and on–off 
states of genes

Can model dynamics 
and regulation

Biological systems are 
rarely discrete

108

Bayesian 
approaches

Gene regulatory 
networks and 
signalling networks

High-throughput 
data sets

Probability 
distribution score

•	Non-biased
•	Can include 

disparate and even 
non-biological data

•	Takes previous 
associations into 
account

•	Statistical
•	Issues of over-fitting
•	Requires comprehensive 

training data

109, 
110

Graph and 
interaction 
networks

Protein–protein and 
genetic interaction 
networks

Interaction network 
that is based on 
biological data

Enriched clusters of 
genes and proteins

•	Incorporates prior 
biological data

•	Encompasses most 
cellular processes

•	Dynamics are not 
explicitly represented

111, 
112

Pathway 
enrichment analysis

Metabolic and 
signalling networks

Pathway databases 
(for example, KEGG, 
Gene Ontology and 
BioCyc)

Enriched pathways •	Simple and quick
•	Takes prior 

knowledge into 
account

•	Biased to human-defined 
pathways

•	Non-modelling approach

73

KEGG, Kyoto Encyclopedia of Genes and Genomes.
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Metabolic pathways
In the context of this Review, 
sets of pathways that are 
calculated by metabolic 
network-based pathway 
analysis tools such as Extreme 
Pathways and Elementary  
Flux Modes.

Metabolic engineering
The practice of improving 
cellular production of target 
compounds of interest by 
modifying and optimizing 
genetic, regulatory and 
environmental parameters  
of cellular metabolism.

Genome-scale models
The formulation, using 
mathematical models, of 
genome-scale metabolic 
network reconstructions.  
They are synonymous with 
constraint-based models in  
the context of this Review.

Pathway enrichment 
analysis
A high-throughput data 
analysis technique to 
understand more global 
changes in an experiment  
by grouping individual 
measurements of biological 
components (for example, 
genes and proteins) into a 
context that is based on 
various pathway databases (for 
example, Kyoto Encyclopedia 
of Genes and Genomes,  
BioCyc and Gene Ontology).

Metabolic flux analysis
An experimental approach  
to identify metabolic fluxes 
using isotopically labelled 
metabolites and computational 
software that reconciles 
experimental data with 
network topology.

Flux distributions
Sets of calculated flux  
values for all reactions in a 
constraint-based model.

Pareto surface
The space that is formed when 
multiple objective functions are 
modelled at once; it represents 
a set of optimal solutions, in 
which increasing the value of 
one of the objectives results in 
a trade-off with other objective 
values.

genome-scale models that are now enabling the research 
community to obtain meaningful predictions of biologi-
cal functions. This Review is focused on this most recent 
phase in the field of CBM development.

We first discuss the latest evaluations of the assump-
tions of constraint-based modelling. Second, we 
discuss the integration of genome-scale data sets — 
specifically, omic data and biomolecular interaction 
data — with CBMs. Third, we focus on how discre
pancies between model predictions and experimental 
data allow targeted experimentation that leads to bio-
chemical discovery. Fourth, translational applications 
of constraint-based modelling, including metabolic 
engineering and drug target discovery, are discussed. 
Finally, we focus on recent advances of integrating 
CBMs with other modelling approaches to increase 
their predictive scope.

Refining objectives
The first constraint-based method for biological predic-
tions was flux-balance analysis (FBA). Its formulation is 
rooted in the hypothesis that a cell is ‘striving’ to achieve 
a metabolic objective (BOX 2). Studies have shown that, 
by optimizing the assumed cellular objectives of growth27 
and energy use36,37, one can predict metabolic fluxes in 
microorganisms. Other studies have questioned the  
universality of the objective function of biomass growth 
for predicting relevant metabolic fluxes38–40.

Do cells maximize growth rate? To identify the objec-
tive function that best predicts experimental data on 
growing cells, one study41 greatly expanded the ini-
tial assessment of appropriate objective functions for 
FBA by compiling 44 metabolic flux analysis data sets of 
in vivo flux distributions for E. coli, and the researchers 
evaluated the ability of a reduced CBM to predict these 
measurements using dozens of single and combined 
candidate cellular objective functions (FIG. 1c). The best 
representation for the in vivo fluxomic data sets was a 
Pareto surface that is defined by a combination of three 
objectives: maximizing biomass generation, maximiz-
ing ATP generation and minimizing reaction fluxes 
across the network; that is, the minimization is a proxy 
for the most efficient use of the proteome42. Using flux 
variability analysis (FVA) (BOX 2), the authors found 
that there is some ‘slack’ in metabolic reaction fluxes 
when the cell is operating close to but not on the Pareto 
surface. In fact, they also observed that the in vivo flux 
distributions were slightly sub-optimal. The authors 
showed that this sub-optimality is most likely an  
evolutionary adaptation that allows rapid adjustment 
to environmental perturbations. In this study, meta-
bolic flux analysis simulations were limited to central 
carbon metabolism. Future studies are therefore needed 
to determine whether the optimality principles that 
have been derived in this study will hold for other 
metabolic subsystems that are studied using different 

Box 1 | Constraint-based modelling: motivation and definition

The functional capabilities of biological systems are constrained by their genetics and environment, and by 
physico-chemical laws. For example, most natural environments are limited in nitrogen or phosphate. In addition, the rate 
of photosynthesis is a function of latitude as the incident flux of photons changes. In the 1960s, Daniel Atkinson realized 
that solvent capacity was a limitation in all cells, as cells tend to consist of 70% water and 30% biomass100. In 1973, Paul 
Weisz showed that most intracellular processes operate at rates that are close to the limits of diffusion101. These and other 
myriad constraints under which cells operate and evolve have been summarized102.
We can now systematically reconstruct metabolic and other biochemical reaction networks (see the figure). Metabolic 

networks are analogous to flow networks, in which metabolites (shown as circles) ‘flow’ through the network in a manner 
that is similar to liquids flowing in a pipe. These flows, and thus the state of a network, are subject to myriad constraints. 
The network can be converted into a mathematical format known as the stoichiometric matrix for computation. Rather 
than deriving a single solution, constraint-based models have an associated solution space (shown as a box) in which all 
feasible phenotypic states exist given the imposed constraints. This allows one to simultaneously account for the many 
processes that act on and in cells.
Metabolite flow is constrained by, among other things, the network topology (for example, the connection of 

metabolites) and a steady-state assumption (for example, the assumption that internal metabolites must be produced and 
consumed in a mass-balanced manner). It is also constrained by the known upper bounds (also known as capacities; for 
example, V

1,max
) and lower bounds of individual reaction fluxes. Imposing such constraints ‘shrinks’ the solution space to 	

a more biologically relevant region. The challenges in constraint-based modelling lie in identifying and imposing the 
necessary and dominant constraints to define a solution space, as well as in probing the solution space in a manner such 
that physiologically relevant fluxes or phenotypes are determined.

Figure is modified, with permission, from REF. 3 © (2012) Macmillan Publishers Ltd. All rights reserved.
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Central carbon metabolism
The metabolic pathways and 
reactions that convert sugars 
into the metabolic precursors 
that are required for growth.  
It is typically comprised of 
glycolysis, pentose phosphate 
pathways and the tricarboxylic 
acid cycle.

Solution space
The range of all feasible  
values for variables in a 
constraint-based model,  
which represents all potential 
metabolic reaction flux 
distributions on the basis of 
the given constraints.

labelled metabolites. Nonetheless, CBMs can use  
optimality principles to predict the approximate 
growth state and the ‘hedging’ functions that keep the 
cells from fully reaching the predicted optimal states, 
which are yet to be delineated. Such hedging functions 
are expected to vary from strain to strain and from 
organism to organism on the basis of their evolutionary  
history.

Moving beyond the assumption of growth optimality.  
Although the prediction of optimal growth rates has 
historically received much attention, most of the 
recent studies that are highlighted in this Review do 
not assume optimality of cellular growth. Researchers 
have been increasingly adopting alternative unbiased 
approaches — such as Markov chain Monte Carlo 
(MCMC) sampling, omic data integration and meta-
bolic pathway analyses3 — that are not subject to 
assumptions of optimality.

Contextualizing omic data
The constraint-based modelling framework is ame-
nable to simultaneous integration of a range of omic 
data types31 (FIG. 1). In particular, omic data have been 
used both to constrain calculated flux distributions 
and as a comparison and validation tool for model 
predictions. Such omic data integration has enabled 
context-specific studies of the metabolism of an organ-
ism and, in the following cases, the studies of enzyme  
promiscuity and pathogenesis.

Why are some enzymes specific and some promiscuous? 
It is thought that ancestral enzymes were promiscuous 
and inefficient, and that they have evolved to become 
catalytically efficient and specific43. However, it is not 
well understood why such evolution took place for some 
enzymes but not for others. To address this question, one 
study44 classified proteins in the E. coli CBM45 into two 
groups (that is, specialist and generalist enzymes) on the 
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Box 2 | Constraint-based modelling: introduction to methods for analysis

Constraint-based models (CBMs) have been widely deployed; see REF. 3 for an extensive description of the developed 
methods. However, most of these techniques are based on two key components: the constraints on the biological system 
and the analysis method to predict fluxes (see the figure).

Constraining metabolic models. The toy model (see the figure, part a) contains metabolites (shown as circles) that are 
converted by reactions (shown as arrows). Each reaction has a range of potential flux values, which can be constrained 
(shown as sliders). The imposition of constraints defines the associated solution space of the CBM. Most methods modify 
the metabolic reaction bounds for model parameterization. Simple constraints include fixing cellular input and output 
ranges on the basis of uptake and secretion of metabolites56, as well as carrying out genetic knockouts by setting the 
associated bounds of the reactions to zero24. More advanced techniques include modifying reaction bounds on the basis 
of mRNA and protein expression data, either by setting the bounds to zero for reactions that correspond to absent 
transcripts and proteins34,35 (see the figure, part a) or by linearly adjusting the bounds on the basis of transcript and 
protein abundances103.

Determining flux distributions. After model parameterization, fluxes are calculated. A simplified solution space is 
depicted with two reactions (V

1
 and V

2
) and an objective function (V

obj
) (see the figure, part b). The standard approach of 

flux-balance analysis104 either maximizes or minimizes the flux of a user-defined reaction (that is, the objective function) 
using linear programming (shown by the green circle). Another common approach is flux variability analysis105, in which 
the maximum and minimum fluxes through each reaction are iteratively computed when the flux of the objective 
function is typically constrained to its maximum value (shown by yellow circles). Finally, Markov chain Monte Carlo 
(MCMC) sampling computes many candidate flux distributions (shown as red dots) that provide a probability distribution 
for the fluxes. This approach is unbiased, as no assumption of an objective is required.
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basis of the number of reactions that are catalysed by 
each enzyme. The authors showed that reactions that are 
associated with specialist enzymes are more likely to be 
essential on the basis of growth phenotypes of knockout 
strains, and that these reactions are more likely to carry 
a high and variable flux across hundreds of in silico envi-
ronmental conditions on the basis of MCMC sampling 
(BOX 2). Large, disparate data sets were used to validate 
simulations. Gene essentiality predictions were validated 
by comparison with a gene deletion collection46. An 
analysis of kinetic parameters from the Braunschweig 
enzyme database (BRENDA)47 showed that specialist  
enzymes have higher in vitro catalytic activity (that is, 
higher turnover number (kcat)) and higher substrate  
affinity (that is, lower Michaelis constant (Km)). Omic 

data sets revealed that specialist enzymes are more 
tightly regulated at multiple levels, which is indicated by 
transcriptional and post-translational modifications, as 
well as by small-molecule-mediated control. Although 
enzyme promiscuity has not been fully elucidated and 
might not be fully captured in the model, the CBM is  
nevertheless the best self-consistent representation 
of known metabolic reactions and enzymes in E. coli. 
Consequently, these predictions provided a direction 
to integrate and interpret disparate data sets with the 
CBM, thereby validating a genome-scale hypothesis 
that the evolution of an enzyme towards specificity and 
catalytic efficiency is dependent both on the function of 
the enzyme in its metabolic network context and on its 
evolutionary response to selection pressures.

Figure 1 | The multiple uses of high-throughput data in constraint-based models.  Constraint-based modelling can 
be used to interpret and augment omic data sets by using an underlying cellular network that has been biochemically 
validated. Metabolites are represented by circles. a | Similarly to pathway enrichment analysis and interaction 
networks, high-throughput data can be integrated with the metabolic network topology to determine enriched 
regions and even significantly perturbed metabolites32. b | Omic data add an additional layer of constraints for reaction 
fluxes. One study48 integrated expression profiling data to determine context-specific flux distributions (pathway 
shown in red), which increases the fidelity of the data (represented as bars) as well as the accuracy of flux predictions 
(upper panel). In addition, two other studies77,78 used omic data to build cell- and tissue-specific models of human 
metabolism by removing unexpressed reactions (shown as discoloured reactions) from the global human metabolic 
network (lower panel). Differences in these networks can be exploited to learn unique features of each network.  
c | Constraint-based analysis predictions can be compared and validated against high-throughput data sets. One 
study41 compared flux-balance analysis solutions of different objectives against 13C fluxomic data to find a combination 
of objectives that best fit the in vivo fluxes. 
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Machine learning method
A method that applies 
statistical methods to discover 
generalizable rules and 
patterns in complex data sets.

What is the role of metabolism in pathogenesis? 
Intracellular pathogens adapt metabolism to their host 
environment during pathogenesis. One study48 gene
rated transcriptional profiling data of pathogenic intra-
cellular growth to investigate the relationship between 
metabolism and pathogenesis of Listeria monocytogenes. 
The researchers analysed the data both through tradi
tional pathway enrichment analysis (TABLE  1) and 
through integration with a CBM of L. monocytogenes. 
They used the iMAT algorithm34 that computes a flux 
distribution which best uses reactions that are associ-
ated with upregulated genes and which avoids using 
reactions that are associated with downregulated genes 
(FIG. 1b), thereby predicting differential reaction use 
between conditions. By comparing pathway enrich-
ment analysis of the transcription data with and without 
iMAT, the authors found that iMAT increased accuracy 
in representing known changes in intracellular growth 
because both the CBM and the computed flux states 
contextualize the expression data. In this way, incor-
rectly upregulated transcripts — either due to a false-
positive measurement or due to post-transcriptional 
regulation — are algorithmically ‘corrected’ if the 
rest of the associated pathway is inactive (FIG. 1b) and 
vice versa. The higher predictive accuracy helped the 
authors to focus their experiments on highly active 
pathways, which were then experimentally confirmed 
by generating conditional knockout strains. Prospective 
experiments that were based on the identified pathways 
showed that limiting concentrations of branched-chain 
amino acids induced virulence activator genes and  
elucidated the role of amino acid metabolism in patho-
genesis. Thus, analysis of transcription data is often 
hindered by the low signal-to‑noise ratio and by the 
limitation that post-transcriptional regulation is not 
captured in these data sets. These limitations can  
be ameliorated for metabolic transcripts by the con
textualization of the iMAT algorithm and CBMs.

Characterizing interaction networks
Recent work shows that CBMs can be used to place 
interaction networks of diverse biological components 
into context and to interpret these networks. Interaction 
networks describe the phenomenological interactions 
between different biomolecules, including genes49,  
proteins50 and transcription factors51. Such interaction 
networks are information dense and highly valuable, but 
they cannot generally be formulated into a modelling 
framework for prediction of physiological functions. In 
the following examples, the mechanistic information in 
CBMs is used in conjunction with biomolecular interac-
tion networks to derive principles that underlie cellular 
organization.

Genetic interaction networks. The theoretical 
aspects of genetic interactions of metabolic genes 
in Saccharomyces cerevisiae that were derived using 
CBMs have been studied52–54. A recent study55 used  
a CBM and experimental data to discover mechanistic 
principles that underlie global properties of S. cerevisiae  
genetic interaction data (FIG. 2a). First, the authors 

experimentally and computationally quantified genetic 
interactions for the genes in the S. cerevisiae CBM56. 
Both the experimental data and the computational pre-
dictions showed a global property that genes which are 
associated with low-fitness single mutants share many 
genetic interactions. They then used the CBM to pro-
pose a mechanistic explanation of this phenomenon. 
The researchers showed that these deleterious gene 
deletions directly disrupt the production of multiple 
metabolite precursors that are necessary for cellular 
growth. Thus, these genes share genetic interactions 
with other genes that contribute to various aspects of 
their functionality.

The same researchers found that FBA underpredicts 
genetic interactions, which can be attributed to the 
optimality assumption of FBA, to the inherent inability 
of FBA to capture regulation and data on toxic interme-
diates, or to an incompletely or incorrectly annotated 
metabolic network. To determine whether modifying 
the CBM could increase its predictive power, a machine 
learning method was implemented to reconcile the two 
networks by removing reactions, modifying reaction 
reversibility and altering the biomass function in the 
CBM. Model refinement identified one of the two 
NAD+ biosynthetic pathways from amino acids in the 
CBM as a source of inaccurate predictions. Through 
growth experiments using mutant strains, the research-
ers confirmed that the second biosynthetic pathway 
was not present in S. cerevisiae. This study shows that 
CBMs can suggest the mechanistic underpinnings of 
genetic interaction networks and that the compari-
son of the metabolic and genetic interaction networks 
can lead to targeted improvements in biochemical 
knowledge.

Transcriptional regulatory networks. CBMs have 
aided the characterization of underlying principles of 
transcriptional regulatory networks for E. coli metabo-
lism57 (FIG. 2b). Previous studies have shown a moderate 
link between metabolic topology and transcriptional 
regulation26,58. To provide a more detailed analysis, one 
study57 calculated potential pathways through meta-
bolic subsystems of the E. coli CBM. Metabolic pathway 
structure has been of great interest26 because a full enu-
meration of pathways can describe all possible steady-
state metabolic phenotypes. However, the difficulty in 
computing Elementary Flux Modes for genome-scale 
networks has hindered their widespread use. A recently 
developed alternative — Elementary Flux Patterns59 
— calculates metabolic pathways in individual sub-
systems. This method ignores pathways that traverse 
multiple metabolic subsystems but is computationally 
tractable for genome-scale networks. By comparing 
Elementary Flux Patterns with transcriptional profil-
ing data sets60, the authors showed that pathways were 
only moderately co‑expressed, but the degree of such 
expression varied greatly from perfect co-expression 
to no co‑expression. They then showed that tran-
scriptional regulation of pathways is dependent on 
the ‘cost’ of producing the associated enzymes and  
on the required response time. In pathways that contain 
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Gap-filling
Pertaining to a procedure  
for targeted expansion of 
metabolic knowledge, whereby 
prospective experiments are 
designed on the basis of 
discrepancies in experimental 
data and model predictions.

‘expensive’ proteins (that is, proteins that are larger in 
size), transcriptional regulation typically occurs for all 
enzymes in the pathway, whereas pathways with ‘low-
cost’ proteins are typically transcriptionally regulated 
only at the first and last enzymes of the pathway. This  
categorization explained some cases of low co‑expression.  
Thus, by pairing the CBM network topology with tran-
scriptional regulatory networks, this study was able 
to outline key principles of metabolic regulation for  
different types of metabolic pathways.

Targeted expansion of metabolic knowledge
The studies discussed above focus on integrating CBMs 
with large-scale data sets to gain mechanistic under-
standing. However, incomplete knowledge of the meta
bolism of the target cell leads to inaccurate predictions. 
One feature of computational models is that incorrect 
predictions can identify missing or incorrect metabolic 
knowledge. Thus, the discrepancies between CBM  
predictions and experimental data have been used  
to design targeted experiments that correct such  
inaccuracy in metabolic knowledge61,62.

Discovering new human metabolic capabilities. The 
initial reconstruction of the global human metabolic 
network — Recon 1 (REF. 63) — is incomplete owing to 
gaps in our knowledge of human metabolism. Thus, 
Recon 1 is missing metabolic reactions. Using an 
established protocol62, one study64 identified such gaps 
in our knowledge by simulating either production or 
consumption of every metabolite to assess whether the 
metabolite was fully connected to the rest of the net-
work. For the metabolites that were not fully connected, 
a universal database of metabolic reactions65 was used to 
predict the fewest reactions that were required to fully 
connect them. The authors found 73 candidate ‘gap-
filling’ solutions that fully connected the disconnected 
metabolites, 47 of which were supported by the litera-
ture. Focusing on gluconate, which is a disconnected 
metabolite, the authors experimentally characterized 
open reading frame 103 on chromosome 9 (C9orf103) 
as the gene that encodes gluconokinase. This study illus-
trates how a self-consistent model of metabolism guides 
researchers to refine experiments to fill in missing gaps 
in our current knowledge.
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Figure 2 | Predictive case studies in understanding underlying principles of interaction networks.  Many network 
types are used to represent cellular behaviour. Recent studies have compared the properties of interaction networks 
against constraint-based models (CBMs) to learn global principles. a | One study55 compared an experimental set of 
genetic interactions for metabolic genes against interactions that were predicted by flux-balance analysis (FBA).  
The CBM was able to recapitulate many of the in vivo principles. However, there was a high number of incorrect model 
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acids was only possible from l‑tryptophan (l‑trp) but not from l‑aspartate (l‑asp). Δbna refers to any of the genes that 
are related to the kynurenine pathway, including bna1, bna2, bna4 and bna5. b | Another study57 calculated metabolic 
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Auxotrophies
Metabolic limitations that 
impair the ability of a cell or 
organism to synthesize a 
particular metabolite that is 
essential for growth, which 
force the cell or organism to 
rely on an exogenous source  
of the nutrient.

Discovering enzyme functions in E. coli. Constraint-
based modelling has been used to discover biochemical 
knowledge about the well-characterized metabolic net-
work of E. coli. Through systematic genetic perturbation 
of E. coli central carbon metabolism, one study66 dis-
covered a novel pathway and previously uncharacterized 
enzymatic functions. Single, double and triple knock-
out strains of central metabolic genes were grown on 13  
different growth conditions with various carbon sources 
to determine positive and negative genetic interactions. 
Concurrently, genetic interactions were predicted using 
the E. coli CBM45. After careful removal of false predic-
tions that were due to model assumptions (for example, 
the inability of FBA to differentiate between major and 
minor isozymes, as enzyme abundance and kinetic acti
vity are not captured), it was observed that discrepan-
cies that were related to talAB interactions in the pentose 
phosphate pathway could not be reconciled. To deter-
mine the cause, the authors generated transcription and 
metabolite profiling data for the wild-type and knockout 
strains. A metabolomic analysis identified a new meta
bolite — sedoheptulose‑1,7‑bisphosphate — that had not 
been previously characterized in E. coli, which suggests 
the existence of a novel reaction. Using metabolic flux 
analysis and in vitro enzyme assays, they confirmed that  
phosphofructokinase carries out the reaction and  
that glycolytic aldolase can split the seven-carbon sugar 
into three- and four-carbon sugars. Thus, the detailed 
analysis of the CBM against data discrepancies found 
two new catalytic functions of classic glycolytic enzymes.

Designing metabolic phenotypes
CBMs have been used for translational applications, 
including the design of metabolic phenotypes. In the 
past ten years, many algorithms have been developed 
for predicting useful genetic manipulation strategies for 
metabolic engineering67,68. They have also been impor-
tant in assessing the net energy balance and the level of 
greenhouse gas emission for bioethanol and biodiesel 
production69. Here, we discuss one recent CBM success 
in this field of research.

Production of non-natural, commodity chemicals. There 
has been a push to use biotechnology to produce com-
modity chemicals. To this end, one study70 designed an 
E. coli strain that produces 1,4‑butanediol (BDO) at high 
yields. Two key hurdles were overcome using computa-
tional methods. First, BDO is not a naturally occurring 
compound in any organism. The authors used a pathway 
prediction algorithm71 that determines the necessary 
biochemical transformations to convert an endogenous 
E. coli metabolite to BDO. A final pathway was chosen 
on the bases of thermodynamic feasibility72, the theoreti-
cal yield of BDO (which was determined using FBA), the 
number of known enzymes for the biochemical trans-
formations (which was determined using pathway data-
bases73) and the topological distance of the pathway from 
central carbon metabolism. Second, when the pathway 
was introduced, the organism did not produce BDO at 
high rates; thus, a ‘rational’ approach to producing a met-
abolic design was pursued using the E. coli CBM45 and 

the OptKnock algorithm74. A four-knockout strategy  
that blocked the production of natural fermentation 
products was chosen to force the strain to balance redox 
and to channel all carbon flux through BDO production 
(FIG. 3a). Further genetic manipulations were needed to 
create the final strain, which included modifying tran-
scription factors, swapping E. coli metabolic enzymes 
with non-native enzymes and optimizing codons. There 
are many hurdles to designing a production strain, but 
this study shows that CBMs can have a vital role in 
accelerating and completing the industrial strain design  
pipeline to produce non-natural metabolites.

Discovering drug targets
The ability of constraint-based modelling to predict the 
effects of gene knockouts provides an important tool for 
drug targeting studies75. Three recent experimentally 
validated studies have discovered novel cancer drug  
targets and antibiotics.

Exploiting deficiencies in cancer metabolism. There has 
been renewed interest in studying metabolic alterations 
that occur in cancer cells76. In two studies77,78, researchers 
hypothesized that they could use CBMs to determine 
and exploit the metabolic auxotrophies of cancer cells. 
The first study77 used a model-building algorithm79 that 
uses cues from transcriptomic data to prune metabolic  
reactions from Recon 1 (REF. 63) in order to build a 
‘generic’ cancer model (FIG. 1b). They then used FBA-
predicted knockout phenotypes to determine ‘cytostatic’ 
drug targets that selectively block growth of the cancer 
model but that do not affect ATP generation and growth 
of the ‘healthy’ Recon 1 model. Interestingly, even though 
cancer cells have heterogeneous genotypes and pheno-
types, it was found that approved or experimental cancer 
drugs exist for 40% of the determined cytostatic drug  
targets. Analyses of growth phenotypes using CBMs focus 
on the capacity for growth under single knockout condi-
tions. The surprising agreement between computational 
predictions and experimental results for a generic model 
suggests that the metabolic capabilities of cancer cells  
are starkly different from those of healthy human  
cells, which allows drug combinations to be detected.

In a follow‑up study78, the researchers experimentally 
investigated fumarate hydratase deficiency that can cause 
hereditary leiomyomatosis and renal cell cancer. At the 
time, no mechanism for reduced NADH regeneration 
was known for fumarate hydratase-deficient cells. The 
researchers immortalized and constructed two cell lines, 
one of which expressed fumarate hydratase and one 
that was deficient in fumarate hydratase. Starting from 
Recon 1, transcription data were used to build two cell 
line-specific models. By comparing predicted knockout 
growth phenotypes, they identified a selectively essen-
tial pathway for haem biosynthesis and degradation in 
fumarate hydratase‑deficient cells, which represented 
a potential mechanism for NADH regeneration. Haem 
oxygenase 1 (HMOX1) was experimentally inhibited in 
both cell lines, and fumarate hydratase‑deficient cells were 
selectively killed, which shows that fumarate hydratase 
and HMOX1 are in fact synthetically lethal as predicted.
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Reaction bounds
User-defined constraints on 
the minimum and maximum 
allowable flux values for a 
particular metabolic reaction  
in a constraint-based model.

Metabolite essentiality 
analysis
A metabolite-centric approach 
to determine essential 
components for cellular growth. 
To computationally test the 
essentiality of a metabolite,  
the consuming reactions of the 
particular metabolites are 
constrained to zero.

Interestingly, the haem pathway ranked only 39th 
in terms of overexpressed pathways in fumarate 
hydratase‑deficient cells, which meant that the predic-
tions were only possible through combining expression 
data with the CBM. These results are a step towards 
identifying effective anticancer drugs using genome-
scale metabolic knowledge. As the predictions of the 
CBM focus on differential metabolic capacities, there is 
a potential for false-negative predictions, as additional 
layers of differences are not taken into account. In addi-
tion, it will be interesting to see whether these methods 
can be extended to other cancer types in which germline 
mutations are either unknown or absent. The identifi-
cation of the haem pathway as synthetically lethal with 
fumarate hydratase represents a key success in using 
CBM predictions for prospective experimentation for 
studying human disease.

Essential metabolites guide antibiotic discovery. Gene 
knockout simulations in CBMs are accomplished by 
constraining the gene-associated reaction bounds to 
zero (BOX 1). Moving past a gene-centric approach, an 
alternative approach for drug targeting is metabolite 
essentiality analysis80 (FIG. 3b). To ‘remove’ a metabolite 
in a CBM, the bounds of the reactions that consume the 

metabolite are constrained to zero, and the steady-state 
constraint for that particular metabolite is relaxed to 
allow internal metabolite accumulation.

One study81 reconstructed a genome-scale meta-
bolic network for Vibrio vulnificus, which is a Gram-
negative pathogen. By applying metabolite essentiality 
analysis, the authors found 193 metabolites that are 
essential to cellular growth. They narrowed the list 
down to five essential metabolites that represented 
promising targets for drug development by removing 
metabolites that are found in humans to lower poten-
tial toxic adverse effects and by removing metabolites 
that have a single consuming reaction for a more robust 
effect on the pathogen. The identified metabolites typi-
cally affect a single gene, which means that traditional  
reaction knockouts could have been used.

However, using a metabolite-centric approach has 
its advantages. It allowed the authors to search for struc-
tural analogues of the essential metabolites to inhibit 
the enzymes that relied on them as substrates. They 
screened the inhibitory capability of 352 compounds 
that were structurally similar to the predicted essential 
metabolites, and the most potent compound was chosen 
for further evaluation as an antibiotic. The compound 
was confirmed to bind to the target enzyme in folate 

Figure 3 | Predictive case studies in metabolic engineering and drug targeting.  Constraint-based models have 
been used for answering important questions in translational research. a | One study70 used multiple computational 
and experimental tools to design an Escherichia coli strain that produces 1,4‑butanediol (BDO). An unengineered 
wild-type (WT) strain trades off metabolite production with cellular growth (shown by the solid line in the solution 
space). Using the OptKnock algorithm, BDO production was ‘coupled’ with the growth objective of the cell by forcing 
the synthetic BDO pathway to be the sole route for E. coli to maintain redox balance (shown by black arrows). Thus, the 
solution space is modified such that BDO production is linked to cellular growth (shown by the dashed line in the 
solution space). b | In one study81, researchers took an alternative, metabolite-centric approach to drug targeting, 
which computationally removes consuming reactions of a particular metabolite. The approach was experimentally 
confirmed for Vibrio vulnificus by a structural analogue of the endogenous metabolite, which also acts as a 
small-molecule inhibitor. c | Metabolic reactions in the E. coli model were augmented to capture the generation of 
reactive oxygen species (ROS), which allowed the use of flux-balance analysis to predict ROS production in one study82. 
In follow‑up experiments, the authors show that it is possible to predict drug target strategies to enhance endogenous 
ROS production to increase the efficacy of other antibiotics. TCA, tricarboxylic acid cycle.
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Coupling constraints
Constraints that enforce strict 
relationships between model 
biochemical transformations, 
thereby connecting the fluxes 
for different cellular processes 
(such as transcription, 
translation, and tRNA and 
protein use for a metabolic 
reaction).

Linear programming
A mathematical optimization 
technique that calculates the 
maximum or minimum value of 
a particular variable (that is, 
the objective function) on  
the basis of a set of linear 
constraints; an example of  
this is flux-balance analysis.

Consensus sequences
Conserved sequences of 
nucleotides or amino acids  
that represent the target for a 
biomolecular event, often for 
proteins binding to the genome.

biosynthesis, which validated the CBM and chemo-
informatic predictions. Furthermore, they found that  
the compound was more effective than current anti-
bacterials. By using a CBM to analyse metabolism, 
antibiotic discovery can be approached from multiple 
perspectives (for example, from the perspective of a 
gene, a reaction or a metabolite).

Increasing antibiotic efficacy through ROS production. 
ROS can weaken and kill pathogens, and modulation 
of ROS production could therefore be used as part of 
an antimicrobial strategy. As a proof of concept, one 
study82 predicted genetic engineering strategies in E. coli 
to increase internal ROS generation in order to increase 
antibiotic efficacy. The current E. coli CBM45 does not 
account for the major sources of ROS production. 
Thus, 133 metabolic reactions with potential for ROS 
generation were augmented in the E. coli CBM (FIG. 3c). 
With the updated CBM, computed flux distributions 
of single knockouts included a quantitative readout of 
ROS generation. Thus, gene knockouts that increase the 
endogenous ROS production were predicted, many of 
which increased inefficiencies in production or usage 
of ATP. For validation, the researchers experimentally 
knocked out genes that were predicted to increase 
endogenous ROS production, as well as genes that were 
predicted to have no effect as negative controls. There 
was high qualitative concordance of the predictions 
with experimental measurements of ROS production, 
which suggests that a CBM could be used to tune ROS 
production. These results are striking because little 
quantitative information was necessary in the coupling 
of flux with ROS production and because a statistical 
ensemble approach was used to account for unknown 
parameters. This study was able to predict genetic  
engineering strategies that were proven to increase ROS 
production and to potentiate oxidative attack from 
oxidants and antibacterials, which provides a novel 
approach for antibiotic discovery.

Coupling with other cellular processes
Constraint-based modelling has been mainly applied 
to metabolism. However, researchers have recently 
extended the scope of CBMs and combined them 
with different modelling methods to address ques-
tions beyond metabolism. Two approaches that have 
emerged are extending CBMs of metabolism to include 
additional cellular processes and connecting different 
modelling methods.

Modelling transcription, translation and metabolism. 
CBMs have been reconstructed for cellular processes 
other than metabolism9–12. However, until recently, 
CBMs of different cellular processes had not been inte-
grated. One study83 integrated a CBM of Thermotoga 
maritima metabolism84 with a CBM for transcription 
and translation83 (FIG. 4a). By adding information about 
the transcription and translation machinery, the CBM 
accounts for mRNA transcription, protein transla-
tion, necessary post-translational modifications of 
proteins and use of the protein complex to catalyse 

metabolic reactions in T. maritima (FIG. 4a). To couple 
the necessary machinery for a particular metabolic 
reaction, the authors used coupling constraints85 that 
mathematically link a metabolic reaction flux with  
its required molecular and enzymatic machinery in 
formulating the linear programming problem. The result 
is an integrated network reconstruction that contains 
the molecular biology and metabolism of T. maritima 
at the genome scale and that allows the computation 
of the functional proteome that is needed to express 
a given phenotype. The incorporation of new cellular 
processes in the constraint-based modelling framework 
is exciting but requires additional parameterization of 
enzyme efficiencies under different biological condi-
tions. A key challenge for the improvement and the 
use of these new models is the development of para
meterization techniques that are driven by proteomic 
and transcriptomic data.

The integrated model hopes to address some of the 
crucial challenges that have limited metabolic CBMs. 
First, the integrated model takes into account the vari-
ability of cellular composition at different growth rates, 
while metabolic CBMs only use one biomass function 
for growth rate optimization. Cellular composition 
is dependent on growth rate, and metabolic CBMs 
have previously accounted for variations in growth 
rate with different cellular compositions86. However, 
an integrated model explicitly represents nucleotide 
and protein demands as a function of growth rate,  
so that a traditional biomass function is no longer 
necessary. Second, by coupling transcript and protein 
synthesis with active metabolic reactions, the authors 
quantitatively predicted differential experimental tran-
scriptome and proteome levels across varying condi-
tions. They used upstream genomic sequences of the 
differentially expressed genes to determine putative  
consensus sequences for transcription factor binding. 
The newly derived sequences helped to identify a can-
didate metabolite transporter, which was subsequently 
verified experimentally87. Finally, by incorporating the 
required demands for the machinery for metabolism, 
the integrated CBM unifies the three-objective Pareto 
surface that was discussed above into a single objec-
tive88. Thus, as the content of these models increases, 
the ability of CBMs to explain and predict biological 
functions grows in scope.

Merging statistics with mechanistic networks. Statistical 
approaches are useful when there is limited know
ledge of the underlying biological networks. Unlike 
metabolic networks, the functional states of transcrip-
tional regulatory networks (TRNs) are harder to define  
mechanistically because the underlying biochemistry 
and biophysics are often unknown. One study modelled  
the cellular processes of metabolism and transcrip-
tional regulation using two different modelling 
formulations, which included a CBM for metabolism 
and a probability metric that is based on omic data 
for the TRN89 (FIG. 4b). For E. coli and Mycobacterium 
tuberculosis, the authors amassed the available 
transcriptional profiling data sets and the existing 
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transcriptional regulatory interaction networks. Rather 
than using a Boolean formulation for the TRN90, they 
calculated the probabilities of activation and repression 
on the basis of the collected expression data sets for 
each pair of transcription factor and target gene.

Similarly to how basic constraints are added (BOX 2), 
the TRN was combined with metabolism by adjusting 
upper and lower bounds of individual metabolic reac-
tions in the CBM on the basis of both the calculated 

probabilities of activation of associated target meta-
bolic genes and the allowable flux states (which are 
determined by FVA) (FIG. 4b). The integrated E. coli 
metabolic regulatory model was more accurate in pre-
dicting transcription factor-knockout phenotypes than  
previous attempts that used integrated models90. The 
newly developed integrated M. tuberculosis network 
predicted drug targets and aided the identification of 
novel regulatory roles of transcription factors. Although 
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Figure 4 | Expanding predictive scope through integrative modelling.  The predictive scope of constraint-based 
modelling has been extended beyond metabolism either by explicitly accounting for non-metabolic components in 
the constraint-based modelling approach or by coupling with other modelling frameworks. Metabolites are 
represented by circles. a | The transcription and translation of the necessary mRNA, proteins and cofactors  
have been explicitly represented in a constraint-based modelling framework alongside the metabolism of 
Thermotoga maritima83 (upper panel). This allows simultaneous computation of metabolic fluxes, mRNA transcript 
expression and proteome levels (lower panel). b | Metabolic models have also been coupled with other modelling 
frameworks. The probability of metabolic gene activation and repression by transcription factors (TFs) can be 
computed using a probabilistic transcriptional regulatory network that is based on high-throughput data sets (upper 
panel). The calculated probabilities are then relayed into the constraints of the metabolic reaction fluxes in the 
constraint-based model89, which allow prediction of TF-knockout phenotypes (lower panel). c | Structural systems 
biology can predict biophysical properties of proteins. One study91 calculated the individual activity changes of each 
metabolic enzyme during temperature shift. The combined effect of all the metabolic enzymes on the cell was 
computed by integrating the individual enzyme changes into the flux constraints of the Escherichia coli 
constraint-based model (upper panel), which allowed growth rate to be predicted as a function of temperature 
(lower panel). Enz, enzyme; NTP, nucleoside 5ʹ-triphosphate; P, probability.
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the TRN modifies the CBM of metabolism, the calcu-
lated flux distributions and the metabolites that are 
present do not feedback to parameterize the TRN. A 
further improvement of integrated modelling between 
transcriptional and metabolic networks will be to 
include feedback mechanisms from metabolism.

Structural systems biology. One study expanded the 
E. coli metabolic network by including the experi-
mentally derived protein structures (where available) 
and the computationally predicted protein structures 
for the metabolic enzymes in the network91 (FIG. 4c). 
Using structural bioinformatic92 techniques, changes 
in enzyme activity were predicted and were used as 
constraints on the activity of individual metabolic reac-
tions. The researchers focused on thermostability of  
E. coli enzymes to study growth rate as a function  
of temperature. With this approach, they were able to 
computationally predict growth rates at varying tem-
peratures, which were consistent with experimental 
data. The growth-limiting enzymes were then deter-
mined on the basis of temperature-dependent flux 
constraints. Although other temperature-dependent 
parameters, such as cellular composition, were not 
considered93, the predicted growth-limiting enzymes 
significantly overlapped with mutated genes from 
a previous study94 on adaptive evolution of E. coli to 
higher temperatures. For direct experimental valida-
tion, the growth-constraining enzymes were bypassed 
by supplementing growth media with the metabolic 
product of the enzyme or of the pathway to which 
it belongs. Such supplementation was beneficial for 
E. coli that was grown at superoptimal temperatures, 
which supported the predictive capability of CBMs to 
account for enzyme thermosensitivity. These promis-
ing results raise the prospect of the substantial effects 
that structural modelling might have on improving 
CBM predictions in the future.

Conclusions
Gregor Mendel described discrete quanta of informa-
tion travelling from one generation to the next, which 
determines the form and the function of an organism. 
Subsequently, Wilhelm Johannsen formulated the con-
cept of a gene as the quanta of information, which led 
him to the definition of genotype and phenotype. Since 
then, a major goal of biology has been the quantitative 
description of the fundamental genotype–phenotype 
relationship.

The push in the quantitative biological sciences to 
understand macroscopic properties from microscopic 
measurements has parallels to the elucidation of funda-
mental principles in physics several hundred years ago. 
For example, the Einstein–Smoluchowski relation is a 
model for Brownian motion that quantitatively predicts 
properties of diffusion. Although the theory was an 
approximation of the physical processes95, it has been 
applied and has helped to develop more sophisticated 
models. This Review suggests that the life sciences 
have now reached a point at which many aspects of the 
genotype–phenotype relationship for metabolism can 

be quantified and used to build mechanistic models  
that allow meaningful biological predictions to be 
made. The formulation of high-dimensional models 
that are required to compute full molecular phenotypes 
are enabled by genome sequencing technology, which 
allows the generation of a cellular parts list; by various 
omic data types, which allows a functional readout of 
these parts; and by mechanistic modelling frameworks 
that are amenable to reconciling omic data, network 
structure and knowledge from primary literature. The 
successes of the 14 studies discussed here demonstrate 
that constraint-based modelling is an approach that 
enables the genome-scale study of metabolism.

As with any model, the mathematical theory and 
the applications of constraint-based modelling will 
continue to be challenged and refined, thus improv-
ing our interpretation of biological phenomena. We 
foresee progress to unfold in several major directions. 
First, constraint-based modelling has mainly focused 
on metabolism, and more integrative modelling 
approaches must be explored. Trends in current litera-
ture89,91,96 indicate that other cellular processes may be 
modelled using alternative frameworks that are better 
suited for a particular biological phenomena. Statistical 
approaches are also powerful for modelling biological 
processes that are poorly understood. Integrating other 
approaches with CBMs of metabolism can expand the 
scope of quantitative prediction. Second, the majority  
of applications of CBMs have been for single-cell 
organisms. We see two areas of application into which 
CBMs are likely to expand: human disease and the 
microbiome. Although the human reconstruction (that 
is, Recon 1) is far from complete, the cancer drug tar-
get studies showed that quantitative predictions are still 
possible. With the availability of the second build (that 
is, Recon 2)97, we foresee greater applied uses in human 
disease. There has also been a steady increase in the 
amount of omic data of the human microbiome, and 
CBMs will have an important role in analysing these 
complex data sets98,99. Third, the underlying assump-
tions and methods for constraint-based modelling 
analyses will continue to evolve as more data types 
become available. Similarly to the testing of optimality 
assumptions of FBA, other key assumptions of CBMs 
will be tested in the next few years. For example, with 
the increasing availability of time-course metabo-
lomics, the steady-state assumption can be bypassed 
and concentration changes can be explicitly modelled. 
Rather than assuming constant internal metabolite 
levels, these concentrations can be directly measured 
over a time course in an experiment and the rate of 
change can be integrated explicitly. In addition, the 
increasing availability of genomic data and sophis-
ticated models for the interpretation of these data 
will allow explicit description and integration of the 
dependence of genomic sequence on gene expression, 
protein synthesis and protein structures for metabolic 
reactions in CBMs. We anticipate that these develop-
ments will enable even greater growth in the diversity 
of predictions and in the biological discoveries that are  
achievable by using constraint-based modelling.
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