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A mutation accumulation assay reveals a broad
capacity for rapid evolution of gene expression
Scott A. Rifkin1,2†, David Houle3, Junhyong Kim4 & Kevin P. White1,2

Mutation is the ultimate source of biological diversity because it
generates the variation that fuels evolution1. Gene expression is
the first step by which an organism translates genetic information
into developmental change. Here we estimate the rate at which
mutation produces new variation in gene expression bymeasuring
transcript abundances across the genome during the onset of
metamorphosis in 12 initially identical Drosophila melanogaster
lines that independently accumulated mutations for 200 genera-
tions2. We find statistically significant mutational variation for
39% of the genome and a wide range of variability across
corresponding genes. As genes are upregulated in development
their variability decreases, and as they are downregulated it
increases, indicating that developmental context affects the evolu-
tion of gene expression. A strong correlation between mutational
variance and environmental variance shows that there is the
potential for widespread canalization3. By comparing the evolu-
tionary rates that we report here with differences between
species4,5, we conclude that gene expression does not evolve
according to strictly neutral models. Although spontaneous
mutations have the potential to generate abundant variation in
gene expression, natural variation is relatively constrained.

The expression level of a gene is a polygenic, dynamic, quantitative
trait, and its functional significance can be assessed by studying
genetic variation both within6,7 and between (for example, ref. 4)
populations or species. Such comparisons need to be calibrated with
respect to the effects of mutation. This is commonly measured by the
mutational variance (Vm): that is, the per-generation increase in the
variance of a trait across a population that is due only to mutation.

On the basis of studies in D. melanogaster2,8, we estimate that each
of our 12 mutation accumulation lines contains around 360
mutations. We measured gene expression levels during the third
larval instar (before puparium formation; BPF) and at puparium
formation (PF), before and after the peak of a large pulse of the
hormone 20-hydroxyecdysone that triggers the start of metamor-
phosis (see Methods and Supplementary Fig. 1). This stage is one of
substantial transcriptional activity and turnover9,10, with broad intra-
and interspecific variation in gene expression4. Of 11,798 genes
measured, we detected significant Vm for 3,816 genes at the BPF
stage, for 3,475 genes at the PF stage and for 4,658 genes overall, using
a false discovery rate (FDR) of 0.05. The expression of 5,729 genes
significantly differed between the two stages, although only 2,509 of
these genes showed significant Vm (FDR ¼ 0.05).

To compare the expression variability of different genes, we scaled
estimates of Vm by the residual variance (Vr) to give the mutational
heritability (h2

m) (refs 1, 11). Technical variance is not a significant
factor (see Supplementary Methods), so this Vr could arise from
inherent physiological variability of expression and/or temporal

asynchrony of the sampled individuals. The 95% interval of h2
m for

gene expression ranged from 2.7 £ 1026 to 1.2 £ 1024 with medians
of 2.5 £ 1025 and 2.3 £ 1025 for BPF and PF, respectively (Fig. 1).
These estimates lie at the low end of the variability spectrum,
overlapping life-history traits such as viability in D. melanogaster
and grain yield in barley12. Although the h2

m values were relatively
low, the transcript abundances of roughly three-fifths of the 7,878
genes with measurable mRNA levels in these two stages varied among
our lines, which is ample material for rapid evolutionary change
(Supplementary Data 1).

Some authors have claimed that gene expression evolves neutrally
on the basis of correlations between sequence and expression
divergence13 or on the basis of functional divergence of orthologous
genes between humans and mice14. Other studies suggest that
stabilizing selection has a more important role4,15–17. The expected
neutral divergence between species depends on the baseline mutation
rate for gene expression, which we can derive from the estimates of
Vm in the mutation accumulation lines (see Methods)18. Species
divergences significantly smaller than this expectation would be
consistent with either stabilizing selection within each species
towards a shared (ancestral) value or other kinds of constraint that
prevent neutral divergence.

Under mutation-drift equilibrium, in the absence of selection, the
expected difference between phenotypic values in two lineages isp

(2tVm), where t is the number of generations since their common
ancestor18. Using our estimates for Vm, we calculated the expected
differences in changes in expression levels from BPF to PF between
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Figure 1 |Mutational heritability. Shown are histograms of the mutational
heritability (h2

m) at the two stages BPF and PF.
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D. melanogaster, Drosophila simulans and Drosophila yakuba on the
basis of the divergence times of 2.3 (D. melanogaster–D. simulans)
and 5.1 (D. melanogaster/simulans–D. yakuba) million years with 10
generations per year16,18. The observed differences between these
species4,5 (Supplementary Methods) were less than expected
(Methods) for almost all genes for which we could measure signifi-
cant Vm, suggesting that stabilizing selection has a larger role than
drift in shaping the evolution of gene expression.

Genes with higher Vm tended, however, to have larger between-
species differences (Fig. 2), and patterns of variation across func-
tional groups were also similar between the mutation accumulation
and interspecific data. Genes encoding transcriptional regulators had
significantly low variability in both stages (multiple test, corrected
P , 1024), and the variability of enzymes and structural molecules
was high (corrected P ¼ 0.12 and 0.058, respectively, at PF). Between
species, genes encoding transcriptional regulators and signal trans-
ducers were far less variable in their differential expression than those
encoding enzymes and structural proteins4,16. Despite the overall
pattern of stabilizing selection, greater mutational input could drive
interspecific variation to be higher for some genes than for others.
Alternatively, for genes for which changes in expression are del-
eterious, stabilizing selection may reduce the phenotypic effects of
perturbations, canalizing the expression and thereby restricting the
potential for gene expression evolution.

Stabilizing selection is most effective at driving canalization when
phenotypic variation is environmentally induced3. At both develop-
mental stages, the correlations between Vr and Vm for gene
expression are high (Spearman’s rank correlation coefficient, r s:
0.75 at BPF, 0.74 at PF; Fig. 3). If environmental and genetic
perturbations affect the mechanisms of gene expression in similar
ways19, for example by affecting the reaction kinetics between
transcription factors and binding sites, then organisms probably
have the same genetic basis for coping with them20. Although a high
correlation between Vm and Vr does not necessarily lead to canaliza-
tion12,21,22, the evidence for stabilizing selection makes it likely that
canalization of gene expression would evolve.

Overall, expression levels and h2
m are slightly positively correlated

(r s ¼ 0.11; Supplementary Fig. 2). When developmental infor-
mation is taken into account, however, h2

m is inversely related to
levels of expression. Among the subset of genes with different h2

m in
the two stages, those with increasing expression (higher at PF than at

BPF) had higher h2
m at the earlier stage (median h2

m ¼ 6.2 £ 1025)
than at the later stage (median h2

m ¼ 2.0 £ 1025). Conversely, those
with decreasing expression had lower h2

m at the earlier stage (median
h2

m ¼ 1.4 £ 1025) than at the later stage (median h2
m ¼ 4.9 £ 1025)

(r s ¼ 20.55; Fig. 4). As in interspecific comparisons4, as genes are
upregulated, their expression becomes more stable and less suscep-
tible to mutations. As genes are downregulated or their transcripts
degrade (indicating that large amounts of the proteins that they
encode are no longer important for cellular function), variability of
expression increases.

At least three-fifths of the genes expressed during these develop-
mental stages vary significantly in these lines (FDR ¼ 0.05), which is
as many as the estimated number of mutations. Such widespread
change may be due to a few mutations with broadly pleiotropic
influences. However, the estimated line effects cluster into about 250
distinct patterns of expression (see Supplementary Methods). The
sizes of these clusters are highly skewed, suggesting that some of the
variability is due to pleiotropic mutations, but the number of distinct
patterns indicates that there is the potential for substantial freedom
in the directions of evolution.

Although mutational heritabilities of gene expression are an order
of magnitude lower than those of many other traits1,22, between
population differences, although substantial4, are still far lower than
expected under neutral models. There are at least three possible
explanations for this restriction. First, expression levels are bounded
traits, both above and below. Physical limits on the transcription and
degradation rates of mRNA could make it impossible to change
expression enough to meet the neutral expectation. Over millions of
generations, levels of gene expression evolving at the rates that we
report here would rebound off these constraints, erasing any corre-
lation between mutational variance and between-population differ-
entiation. Second, stabilizing selection may act directly on the
expression of each gene individually. The sheer number of genes
varying along with the complexity of gene interactions in pathways
and networks makes this unlikely to be a general explanation. Third,

Figure 2 |Mutational variance and differences between species. Shown are
log–log plots of Vm of the developmental change between BPF and PF
(x axis) versus the squared difference of this change between species (y axis).
Measurements of D. melanogaster used in the between-species comparisons
are from the data in this study, as are the Vm estimates. Measurements of
D. simulans and D. yakuba are from an extended version of published data4,5

(Supplementary Methods). r s for genes with significant Vm in either stage:
0.27 (D. melanogaster versus D. simulans), 0.45 (D. melanogaster versus
D. yakuba), 0.22 (D. yakuba versus D. simulans).

Figure 3 | Opportunity for canalization. Shown are log–log plots of Vm

versus Vr. Top, BPF; r s ¼ 0.75. Bottom, PF; r s ¼ 0.74.
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network output, namely the production of a particular product at a
specific place and time, may be the target of selection rather than gene
expression itself. As in enzyme flux models23, the selective effect of
any particular change in gene expression may be negligible over a
range of values but become substantial when the abundance of
mRNA becomes rate limiting or when the variation becomes other-
wise functionally relevant. Stabilizing selection, by canalizing net-
work output against perturbations, may facilitate neutrality among
members of the underlying network24. Gene expression would be able
to tolerate a moderate number of mild mutations but would trigger
strong selection if the network output were substantially affected.
Such a model could also account for moderate correlations between
mutational and interspecific variation even when the total level of
between-species divergence is far less than expected under neutrality.

In summary, D. melanogaster has a broad mutational capacity
for changes in gene expression, in both magnitude and genomic
extent, that could potentially provide ample raw material for evolu-
tionary diversification. However, although they vary among closely
related species, gene expression patterns are relatively stable4. In
Caenorhabditis elegans, genetic variances of gene expression are
likewise much less than the neutral expectation17. The convergence
of this observation in two groups of organisms that diverged in the
Precambrian25 and have different reproductive and life-history
strategies indicates that stabilizing selection and structural processes,
including canalization, physical and developmental constraints, and
correlated responses, govern gene expression evolution.

METHODS
Flies. The 12 mutation accumulation lines were randomly chosen from surviv-
ing D. melanogaster Ives strain (IVe-39) sub-lines described in ref. 2, after about
200 generations of mutation accumulation (Supplementary Methods). Immedi-
ately before sampling, they were rapidly expanded over not more than four

generations in uncrowded conditions on standard cornmeal medium containing
0.05% bromophenol blue and sprinkled dry yeast. About 18 h before puparia-
tion, we collected flies with dark full guts (BPF) at the stage when they start to
crawl up the side of the bottle to pupariate. For the puparium formation stage,
we cleared the bottles of pupae and picked newly pupariated flies in 30-min
windows (Supplementary Fig. 1).
Microarray hybridizations. We designed the hybridizations to efficiently
estimate stage-specific across-line and within-line variance (Supplementary
Methods and Supplementary Fig. 3). Each of the 12 lines was measured eight
times at each of two stages. We ground about 30 flies in TRIzol (Invitrogen),
extracted total RNA by adding chloroform, extracted mRNA with oligo-dT
cellulose (Ambion) and poly-prep columns (BioRad), and prepared labelled
sample using the Powerscript fluorescent labelling kit (BD Biosciences) and
monofunctional Cy3 and Cy5 dyes (Amersham). We printed and processed
whole-genome D. melanogaster microarray slides as described4, and hybridized
and washed the samples according to a slightly modified version of protocol
M005 from The Institute for Genomic Research (http://www.tigr.org). We
scanned the slides with a GenePix 4000 series scanner (Axon) and analysed
the images using Spot 2.0 (CSIRO) with modifications for manually flagging bad
spots. We carried out a series of global and array-specific normalizations to
remove dye-, intensity-, location-, and scale-dependent effects (Supplementary
Methods).
Quantitative genetic analyses. After the global and array-specific normal-
izations, we fit the data for each gene individually to several linear mixed models
using Python with calls to PROC MIXED26–28 in SAS software v.8.2 (SAS
Institute; Supplementary Data 2). Roughly 1% of the measurements in the
data set were flagged and not used. Because PROC MIXED uses restricted
maximum likelihood, missing data were not the problem that they would be in a
moments-based estimation.

The gene-specific full model, allowing for stage-specific mean effects,
sequence effects when several spots represent the same gene, spot effects,
stage-specific across line variances and stage-specific residuals is

yijkq ¼mþ Stagei þ Sequenceq þArrayðSequenceÞjðqÞ

þ LineðStageÞkðiÞ þ 1ijk

ð1Þ

ArrayðSequenceÞ,Nð0;j2
AðqÞÞ; LineðStageÞ,Nð0;j2

LðiÞÞ;1ðiÞ ,Nð0;j2
1ðiÞÞ

where y ijkq is the log2 measurement for a sequence q for a particular gene at stage i
from line k on array j, m denotes the grand mean, and N(0,j2) means the normal
distribution with variance j2, respectively subscripted for each component.
Specifically, j2

A(q) is the variance for a particular spot across arrays, and j2
L(i)

represents the variance across lines at stage i. The overall mean, stage and
sequence effects are fixed; the array, line and error effects are random. Prelimi-
nary analyses with models including a covariance term could not estimate
significant correlation between stages, possibly because of insufficient power.
Because each of our samples contained about 30 flies, we multiplied the estimate
of j2

1(i) from our model by 30, and used this residual variance (Vr) as a surrogate
for the environmental variance. If there is appreciable intra-sample covariance
within a line, this correction will overestimate the environmental variance. We
estimated Vm as 1/400 of the across-line variance j2

L(i) (ref. 18). On the basis of a
power analysis, we would detect an across-line variance of 0.02 with a probability
of 0.9 given the median within-line variance of 0.023.

We constructed a hierarchy of six alternative models that relaxed the
assumptions of stage-specificity of j2

L, stage-specificity of j2
1, and the existence

of line-specific effects (Linek). Using a series of likelihood ratio tests, we
determined which model best fit the data and used parameter estimates from
that model for further analyses (Supplementary Fig. 4 and Supplementary
Methods). We used a false discovery rate29 of 0.05 to account for multiple testing
(Supplementary Methods). To reduce bias in our estimates, we subjected the
variance estimates to a jack-knife procedure (Supplementary Methods)30.

Comparisons to interspecific differences used an updated version of pub-
lished data4,5 (Supplementary Methods). We tested for divergence from neu-
trality using a two-tailed F (1,11)-test of the ratio of squared divergence between
species to the neutral expectation (FDR ¼ 0.05). A Kruskal–Wallis test showed
that functional classes of genes did not significantly differ in the ratio of Vm to
squared between-species differences.
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