
Abstract A microarray experiment gives a snapshot of
the state of an organism in terms of the relative abun-
dances of its mRNA transcripts, locating the organism at
a point in a high dimensional state space where each axis
represents the relative expression level of a single gene.
Multiple experiments generate a cloud of points in this
gene expression space. We present a geometric approach
to analyzing the covariational properties of such a cloud
and use a dataset from Saccharomyces cerevisiae as an
illustration. In particular, we use singular value decom-
position to identify significant linear sub-structures in
the data and analyze the contributions of both individual
genes and functional classes of genes to these major di-
rections of variation. Analyzing the publicly available
yeast expression data, we show that under all experimen-
tal conditions the variation in expression is limited to a
small number of linear dimensions. Projections of indi-
vidual gene axes onto the significant dimensions can or-
der the contribution of individual genes to variation in
expression within an experiment. We show that no par-
ticular groups of genes characterize particular experi-
mental conditions. Instead, the particular structure of the
coordinated expression of the entire genome characteriz-
es a particular experiment.

Keywords Microarray · Gene expression · Structural
analysis · Geometry

Introduction

Genomes are systems of interacting components, and bi-
ological function (e.g. sporulation) may not be defined
so much by the absolute activation or repression of a dis-
tinct set of genes as by a system-level coordinated pat-
tern of gene expression (Holstege et al. 1998; Reinitz et
al. 1998; Szallasi 1999). As a cartoon example, consider
the case where an organism has two genes, A and B, and
a trait of interest. One possibility for the relationship be-
tween the genes and the trait is that induction of gene A
is associated with the trait. Alternatively, either induction
of gene A coupled with repression of gene B or the con-
verse is associated with the trait. In the latter case, an ex-
amination of marginal levels of expression of gene A or
gene B will not reveal the association. When external
factors or internal mutations (with respect to an ancestor)
perturb a cell, it responds with a change or a series of
changes in its transcriptional state. Gene interactions, or
gene circuits (Hlavacek and Savageau 1996, 1997;
Savageau 1999), constrain this response to fall along
some substructure of a gene expression space where each
dimension represents the expression level of a different
gene. If the products of gene A induce gene B, we would
expect the covariation of the two gene expression levels
to satisfy a particular constraint structure. For example,
if the gene products of A induce gene B in a linear man-
ner, then the constraint structure would be the equation
level(A)-k*level(B)=0; if the relationship were non-
linear, the constraint structure could be a host of non-
linear equations. Such constraint equations are the solu-
tion sets to the presumed dynamical system of gene in-
teractions (Wolf and Eeckman 1998).

A microarray measurement of gene expression gives a
genome-wide assay of the transcriptional state of a cell
(or organism) which can be represented as a point in
high dimensional gene expression space. Multiple mea-
surements taken by microarray experiments can be used
to identify the constraint structures associated with a par-
ticular developmental sequence or phenotypic state. We
present an example of such an analysis using a collection
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of data from the Stanford Genomics Server. We use vari-
ous geometric techniques to identify the constraint struc-
ture – i.e. the structure of the scatter of measurement
points – and then identify an individual gene's contribu-
tion to this constraint structure. Although in this paper
we restrict our analysis to the linear constraint structures,
this geometric framework is more general. Our method,
therefore, differs in its approach from many clustering
type of algorithms (discussed below) and other applica-
tions of linear ordination (e.g. Raychandhuri et al. 2000)
because it emphasizes the global structure of gene ex-
pression and geometric decomposition of the structure.
We call it constraint structure analysis (CSA) of gene
circuits to emphasize its systemic view of gene function
and possible generalization to non-linear structures.

Linear CSA using singular value decomposition

In the linear case, we use singular value decomposition
to identify an orthonormal set of basis axes which best
fit a cloud of data points by the least squares criterion
(Green and Carroll 1978). In terms of matrices, singular
value decomposition takes a data matrix and expresses it
as the product of three other matrices: M=VDUT, where
M is a G×C matrix of data points (genes by conditions)
with G>C and rank (or dimension) R; V is a G×R
matrix; D is an R×R diagonal matrix; and U is a C×R
matrix. In the case of presently available microarray
data, since the number of genes is vastly more than the
number of conditions, we can assume that R=C. These
matrices have a geometric interpretation. The columns of
V are the orthonormal basis mentioned above which best
fits the data in a least squares sense; the entries of D are
stretching factors; and the rows of U (the columns of UT)
are the original data expressed in this new basis. We are
most interested below in the columns of V (the linear
substructures in the data) and the entries of D – the sin-
gular values whose magnitudes are proportional to the
standard deviation of the projected points along the re-
spective basis axes. The entries of U allow us to gauge
the fit of the orthonormal basis (our model) to the data.
Principal components analysis is a special case of singu-
lar value decomposition, applicable to square, symmet-
ric, positive definite matrices – variance-covariance ma-
trices, for example. Given a noisy data set like microar-
ray data, not all basis axes will be biologically meaning-
ful. To identify significant sets of axes, we randomly
permuted the input data matrices (see Materials and
methods) and then used singular value decomposition on
the randomized matrices to obtain a null distribution of
singular values. Only the axes with singular values great-
er than 95% of the null distribution were kept for subse-
quent analysis. Adopting the terminology from principal
components analysis, we call such significant axes struc-
tural component axes.

The relationship of each of the original axes – indi-
vidual gene expression levels – to the structural compo-
nent axes can be measured by the angle of the original

axes to the structural component axes. We call the cosine
of this angle the response coefficient of the gene. Re-
sponse coefficients are always with respect to a particu-
lar gene, experiment, and structural component axis. A
given gene's contribution to a set of structural compo-
nent axes can be measured by multiplying the square of
the absolute value of the response coefficient for each
axis by the square of the singular value for that axis,
summing over all relevant axes, and then dividing by the
sum of the squares of the singular values. We call this
the overall response index (ORI) of a gene g:

(1)

where SVi is the ith singular value and RCgi is the re-
sponse coefficient of the gene for the ith axis. For a giv-
en experiment, the ORI of a gene measures the contribu-
tion of the gene to the overall covariation in the data set
on a scale from 0 to 1.

Since the structural component axes are vectors in the
gene expression space, the relationship between two sets
of structural component axes (each for different pheno-
type or experimental conditions) can be measured using
the multivariate technique of canonical correlation anal-
ysis (Seber 1984). Given two sets of vectors, A and B,
canonical correlation analysis finds a linear combination
of A and a linear combination of B such that the correla-
tion between the two is maximized. Given two arbitrary
vectors in gene expression space, for example centroid
vectors, we can also find the difference vector which
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Fig. 1 Possible relationships between clouds of experiments in
gene expression space (see text for details)
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represents the linear direction of the differential between
the conditions represented by the two original vectors.

The structural component axes extracted by linear
CSA point in the directions of greatest variation of a data
cloud in the gene expression space (Fig. 1, cloud D). If
these data points are related – timepoints after a pertur-
bation or measurements on a particular cell type, for ex-
ample – the cloud represents the covariation of gene ex-
pression in a cell (or an organism) under a particular set
of related conditions, and the structural component axes
reflect the linear structure of this variation. By compar-
ing the sets of axes from two such data clouds, we can
determine whether cells under two different sets of con-
ditions obey the same constraint structure, even if they
occupy different regions of the gene expression space in
an absolute sense (Fig. 1, clouds B and D). Alternatively,
two clouds centered around the same point – in the same
absolute region of the gene expression space – may not
share the same covariational structure (Fig. 1, clouds B
and C). Linear CSA enables us to distinguish clouds of
measurements both by absolute location in the gene ex-
pression space and also by covariational structure, and
therefore can be used to make fine distinctions between
two cell types or the behavior of cells under different
conditions.

Materials and methods

Data

We used three Saccharomyces cerevisiae datasets from the Brown
and Botstein labs at Stanford University. The cell cycle experi-
ments (alpha factor, elutriation, cdc15, cdc28) consist of measure-
ments from 6,177 ORFs downloaded from http://genome-
www.stanford.edu/cellcycle/data/rawdata/combined.txt (Spellman
et al. 1998). The sporulation set consists of measurements from
6,109 ORFs downloaded from http://cmgm.stanford.edu/pbrown/-
sporulation/additional/spospread.txt (Chu et al. 1998). The diauxic
shift experiment consists of measurements from 6,121 ORFs dur-
ing diauxic shift downloaded from http://cmgm.stanford.edu/-
pbrown/explore/array.txt (DeRisi et al. 1997). We downloaded a
list of known genes and their putative functions from ftp://ge-
nome-ftp.stanford.edu/yeast/tables/ORF_Descriptions/orf_descrip-
tions.txt.

Each data point reflects the log-base 2 transformed mRNA
abundance for each ORF at a particular condition relative to that
of a reference condition. Because these are time series experi-
ments, we interpolated the values of missing data points to make a
straight line between the nearest measured timepoints, set missing

values at the start and end to the first or last measured values, and
discarded information on ORFs missing more than half of the
timepoints by setting all of their values to zero. There were no
missing datapoints in the sporulation and diauxic shift datasets, so
we surmise that they were filled in as equal expression (zero) be-
fore being posted. We also averaged the expression levels of du-
plicated known genes. Finally, we normalized the data sets either
to the centroid of the entire data matrix or to the centroid of each
experimental group individually. Table 1 lists information about
the datasets after these manipulations. For the covariance analysis,
we discard temporal information in the data and treat each data
point as an individual sample under a perturbation. For the func-
tional contribution analyses we recalculated the axes based solely
on known genes, and for the canonical correlation analysis we
used only the 5,541 ORFs which all experiments shared.

Singular value decomposition and other analyses

We performed linear least squares fits to the data matrices using
singular value decomposition implemented in Mathematica 4.0
(Wolfram 1999). All other computations were also implemented as
functions in Mathematica 4.0.

Permutation tests

To assess the significance of the singular value and response coef-
ficient distributions of the data, we generated 200 random matri-
ces for each of the experiments by permuting the data matrices
across conditions, holding the distribution of expression for each
gene constant.

Results

Our main goal in this paper is to present a new analytical
technique illustrated with publicly available data from S.
cerevisiae (DeRisi et al. 1997; Chu et al. 1998; Spellman
et al. 1998). In the discussion below, an individual mi-
croarray measurement captures the cell state under a par-
ticular condition. Conditions, e.g. a series of timepoints
after alpha factor synchronization, comprise experi-
ments. We will primarily analyze the structural compo-
nents within an experiment but will also compare struc-
tural components between experiments and compare the
location of experiments (clouds of points/conditions) in a
common gene expression space.

A few important aspects of the dataset limit the con-
clusions that can be drawn. These limits also highlight
experimental design issues that will enable researchers to
take full advantage of the geometric framework of CSA.

Table 1 Information about the datasets

Alpha factor Elutriation Cdc15 Cdc28 Sporulation Diauxic shift Total dataset

Number of ORFs in published data 6178 6178 6178 6178 6118 6153 6178
Number of ORFs after duplicates 6074 6074 5672 6124 6109 6121 5541

and poor quality ORFs removed
Known genes 3398 3398 3179 3433 3048 3047 2790
Time points (conditions) 18 14 24 17 7 7 87
Significant axes 5 3 5 5 2 1 –
Mating protein genes 155 155 141 155 134 134 –
Cytoplasmic ribosomal protein genes 125 125 124 129 113 113 –
Cell cycle genes (Spellman et al. 1998) 791 791 763 796 790 790 –
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Each dimension of the data set represents the relative
mRNA abundance of a different ORF on a logarithmic
scale. If there were an overall standard reference condi-
tion or a way to measure the absolute levels of expres-
sion, we could place all data points within the same ex-
pression space, and different experiments would corre-
spond to different clouds of points throughout the space.
While the reference conditions for the cell cycle experi-
ments were the same, those of the diauxic shift and spo-
rulation experiments were not, and none of the experi-
ments used the same strain, i.e. genetic background. Be-
cause each entry in our data matrix consists of a loga-
rithm of a ratio (some measure of the fluorescence of a
gene under experimental conditions relative to that under
a reference condition), we are essentially subtracting a
translation factor from each point. When we put different
experimental groups together and analyze the entire da-
taset as a whole, these translation factors are no longer
equivalent, making it unclear where the centers of each
experimental group lie in relation to each other. Conse-
quently, graphical ordinations such as Fig. 3 may not
faithfully depict the relationships between experimental
groups, and we were not able to explore the global limits
on patterns of gene expression. This translation problem
applies to any major factor differing between experi-
ments, including conditions and strains. Including an ac-
cepted standard, i.e. a standard cell (organismal) state, in
every future group of experiments, is essential to make
disparate experiments comparable and, consequently, to
constructing an integrated database.

This standardization problem only affects conclusions
dependent on the centroid of each experiments. The
structural component axes identified by CSA are invari-
ant to the placement of the centroid of experiments.
Therefore, we can still compare the structures of expres-

sion covariation by constructing separate but isomorphic
gene expression spaces for each experiment. The center
of a cloud fixes the origin of its gene expression space
(Fig. 1, dashed lines in cloud A) and the original data is
expressed as deviations from this center. Comparisons
between CSA performed within each experiment sepa-
rately (e.g. canonical correlation, response coefficients,
and directions of structural component axes) are not af-
fected by the discrepancy in reference conditions.

Structure of coordinated gene expression

The data are not distributed evenly in gene expression
space (Fig. 2). The distribution of singular values shows
that significant major structural component axes exist
within all of the experiments. The skewed distribution of
the singular values shows that a small subset of vector
directions (linear subspaces) accounts for a majority of
the variation. Using the pseudo-permutation test we
identified five, three, five, five, two and one significant
structural component axes for the six experiments, re-
spectively. From these limited data, it is not clear wheth-
er there is a clear relationship between the number of
measured data points and the number of significant axes.
For example, Alpha factor, Cdc15 and Cdc28 have the
same number of significant axes despite their different
sample sizes. This might suggest that under a particular
experimental condition, the number of significant dimen-
sions of variation will be constant, regardless of the
number of measurements. The long, flat tails of the dis-
tributions indicate that the gene expression has similar
variances in the vector directions associated with these
smaller singular values. This might result from yeast cell
states varying randomly in gene expression space within

Fig. 2 Singular value distribu-
tions. The length of the struc-
tural component axis measured
by the singular value (along the
y axis) is proportional to the
standard deviation of the condi-
tion points projected onto that
axis. The lighter colors are sig-
nificant axes, the darker colors
non-significant
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certain small bounds, or from some normal pattern of
fluctuation of gene activity for maintenance that is con-
served across all experimental manipulations, or from
sources of error described above. The vector directions
of the larger singular values indicate linear combinations
of gene expression relevant to the particular experi-
ments.

Structure of covariation among experimental groups

For the sake of illustration, we analyzed the covariation-
al structure of the entire dataset as a whole. The different
experimental clouds occupy overlapping, but non-identi-
cal regions of the gene-expression space. Figure 3 shows
the data projected onto the planes formed by the first and
second (Fig. 3a), and third and fourth (Fig. 3b) longest
structural component axes calculated for the entire data-
set. The points corresponding to sporulation fall at a dis-
tance from the other experiments, drawing the longest
structural component axis after them. The diauxic shift

conditions fall along the next longest structural compo-
nent axis, and the other experimental groups also begin
to segregate in various directions. The spatial relations
between experimental groups described by the difference
vectors between the centroids of the datasets can be cal-
culated, the components of which indicate the genes in-
volved in positioning a cloud in one part of the space
versus another. (However, we do not apply it to this data
set because of the standardization problem.)

Analyzing each group individually allows us to com-
pare their coordinated expression patterns between the
experimental groups. When cells are subjected to differ-
ent experimental conditions, there is a systemic response
in the expression level of all the genes; this particular co-
ordination of the genes – the interaction of the expres-
sion levels of different genes – determines the unique re-
sponse of the cell to unique experimental conditions.
Consequently, there is a signature pattern of interaction
of genes for each experimental condition, rather than
changes in a small cluster of individual genes. To ascer-
tain the relationship between the gene interaction pat-

Fig. 3a, b Planes through the 5,541 dimensional subspace of all
the experiments formed by a the first and second, and b the third
and fourth longest structural component axes of the entire dataset

analyzed together. Axes are in log-base 2 relative expression units
and the lengths of the axes are marked. The color scheme matches
Fig. 2

Table 2 Canonical correlations
between the experiments Alpha factor Elutriation Cdc15 Cdc28 Sporulation Diauxic shift

Alpha factor – 0.35 0.60 0.49 0.18 0.32
Elutriation – – 0.39 0.32 0.05 0.46
Cdc15 – – – 0.54 0.16 0.40
Cdc28 – – – – 0.19 0.29
Sporulation – – – – – 0.20
Diauxic shift – – – – – –
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terns of the experimental groups – between their covaria-
tional patterns – we calculated canonical correlations be-
tween them (Table 2). Sporulation is least related to the
other experiments and the maximal correlations between
the cell cycle experiments are around 0.5.

Distributions of response coefficients along the structural
component axes

Consider a system with two genes. If variation in one of
the genes drives variation in the cell state as a whole dur-

ing a particular experiment, the angle between the largest
structural component axis and that gene's axis will be
small, making the response coefficient large. Conversely,
the response coefficient of the other gene will be small.
This distribution of these response coefficients is more
asymmetrical than one where the structural component
axis lay at a 45° angle between the two. We used this
asymmetry of the response coefficient distribution along
a particular axis to measure the degree to which an axis
lies along a particular subspace of the gene expression
space. After sorting the squares of the response coeffi-
cients, we compared how many genes accounted for the

Fig. 4 Response coefficient di-
sributions of the largest thou-
sand response coefficients
(sorted by magnitude) along
the longest structural compo-
nent axes of elutriation, cdc15,
and cdc28. Vertical lines indi-
cate the number of genes which
account for the first 50% of the
variance along that axis

Fig. 5 Systemic contributions
to the axes. The number of
genes which account for the
first 50% of the variance of the
significant structural compo-
nent axes. Colored bars indi-
cate the levels for the structural
component axes ordered from
left to right. Black bars indicate
the range of this statistic for
95% of the 200 random matri-
ces. Grey bars indicate the 99%
significance range
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first 50% of the variance along that axis compared to ax-
es from our random matrices.

In all of the experiments, a few hundred genes ac-
count for the first 50% of the variance along any particu-
lar axis (Fig. 4). Variation in a single gene or even in a
few genes does not drive the variation in cell state. Com-
pared to the random distributions, significantly more

genes account for the variation along most of the axes,
indicating that these axes represent systemic variation in
the cell state (Fig. 5). Moreover, the genes with high re-
sponse coefficients differ between the structural compo-
nent axes within an experiment. These axes only share
between 10% and 25% of the genes which account for
the first 50% of their respective variances. 

Table 3 ORFs with the 20 highest overall response indices (ORIs) in the alpha factor experiment

Rank ORI Gene Functional class Specific function ORF (yeast final code)

1 0.0090 FIG1 Mating Extracellular integral YBR040W
membrane protein

2 0.0065 EGT2 Cell cycle Unknown YNL327W
3 0.0062 AGA1 Mating α-agglutinin anchor subunit YNR044W
4 0.0058 MFA1 Mating α-factor precursor YDR461W
5 0.0056 – – – YNR067C
6 0.0055 – – – YCRX18C
7 0.0053 ASG7 Unknown Unknown YJL170C
8 0.0048 CLB2 Cell cycle G2/M cyclin YPR119W
9 0.0047 – – – YNL279W

10 0.0045 AGA2 Mating α-agglutinin binding subunit YGL032C
11 0.0043 SVS1 Vanadate resistance Unknown YPL163C
12 0.0040 PIR1 Unknown Unknown; YKL164C

Pir1p/Hsp150p/Pir3p family
13 0.0038 HHF1 Chromatin structure Histone H4 YBR009C
14 0.0037 SCW11 Cell wall biogenesis Glucanase (putative) YGL028C
15 0.0037 MRH1 Unknown Similar to Yro2p and Hsp30p YDR033W
16 0.0036 CTS1 Cell wall biogenesis Endochitinase YLR286C
17 0.0034 CST13 Cu2+ homeostasis; Unknown; YBR158W

chromosome stability required for optimal growth
18 0.0033 HHF2 Chromatin structure Histone H4 YNL030W
19 0.0031 – – – YPL158C
20 0.0031 HTB2 Chromatin structure Histone H2B YBL002W

Table 4 ORFs with the 20 highest ORIs in the elutriation experiment

Rank ORI Gene Functional class Specific function ORF (yeast final code)

1 0.0044 HSP30 Diauxic shift Plasma membrane heat shock YCR021C
protein

2 0.0037 CUP1–1 Cu2+ ion homeostasis Metallothionein YHR053C
3 0.0037 CUP1–2 Cu2+ ion homeostasis Metallothionein YHR055C
4 0.0036 CTS1 Cell wall biogenesis Endochitinase YLR286C
5 0.0034 SPI1 Unknown Unknown; similar to Sed1p; YER150W

induced in stationary phase
6 0.0033 SRL1 Unknown Unknown; similar to Svs1p; YOR247W

suppressor of Rad53 lethality
7 0.0026 CIS3 Unknown Unknown; overexpression YJL158C

suppresses cik1 deletion
8 0.0026 CLB1 Cell cycle G2/M cyclin YGR108W
9 0.0026 CHS2 Cell wall biogenesis Chitin synthase II YBR038W

10 0.0024 ECM33 Cell wall biogenesis Unknown YBR078W
11 0.0024 – – – YNR067C
12 0.0023 EGT2 Cell cycle Unknown YNL327W
13 0.0022 CRH1 Cell wall biogenesis Unknown; cell wall protein YGR189C

(putative)
14 0.0022 GAS1 Unknown Cell surface glycoprotein YMR307W
15 0.0022 – – – YOR248W
16 0.0021 GIT1 Unknown Unknown; similar to YCR098C

phosphate transporter
17 0.0020 ECM13 Cell wall biogenesis Unknown YBL043W
18 0.0020 SCW10 Cell wall biogenesis Glucanase (putative) YMR305C
19 0.0020 – – – YER124C
20 0.0019 EXG1 Cell wall biogenesis Exo-β-1 3-glucanase YLR300 W
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Classification of gene types by contributions to patterns
of covariation

The components of the structural component axes vec-
tors – the response coefficients – give us a way to mea-
sure how individual genes contribute to the overall struc-
ture of the data. Tables 3, 4, 5, 6, 7, 8 list genes ranked
by their ORIs. This rank ordering indicates the impor-

tance of each gene in explaining the overall pattern of
expression covariation for a given experiment. Note that
no single gene dominates the significant covariation in
the cell state. We could not have predicted a priori which
individual genes would be highlighted by our analysis,
and these genes are not necessarily the ones which are
most upregulated or downregulated (data not shown).
However, the categories to which these genes belong

Table 5 ORFs with the 20 highest ORIs in the cdc15 experiment

Rank ORI Gene Functional class Specific function ORF (yeast final code)

1 0.0039 CTS1 Cell wall biogenesis Endochitinase YLR286C
2 0.0030 PIR1 Unknown Unknown; YKL164C

Pir1p/Hsp150p/Pir3p family
3 0.0025 SCW11 Cell wall biogenesis Glucanase (putative) YGL028C
4 0.0025 SAG1 Mating α-agglutinin YJR004C
5 0.0024 PHO3 Thiamine uptake Acid phosphatase; constituitive YBR092C
6 0.0023 – – Similar to wheat glutenin, secalin YBR108W
7 0.0022 MF(ALPHA)2 Mating Alpha factor YGL089C
8 0.0022 NCE102 Secretion Non-classical, unknown YPR149W
9 0.0020 ALG1 Protein glycosylation β-1,4-mannosyltransferase YBR110W

10 0.0020 – – – YHR143W
11 0.0020 – – – YER124C
12 0.0019 – – Similar to subtelomerically- YCR007C

encoded proteins
13 0.0019 ALD6 Ethanol utilization Acetaldehyde dehydrogenase YPL061W
14 0.0019 YRO2 Unknown Putative heat shock protein YBR054W
15 0.0019 DIE2 Glucosylation? Glucosyltransferase YGR227W
16 0.0019 FET3 Transport Cell surface ferroxidase YMR058W
17 0.0018 ECM23 Cell wall biogenesis Unknown YPL021W

(putative)
18 0.0018 SSA1 ER and mitochondrial Cytosolic HSP70 YAL005C

translocation
19 0.0018 RME1 Meiosis Transcription factor YGR044C
20 0.0018 YGP1 Diauxic shift Unknown; response to nutrient YNL160W

limitation

Table 6 ORFs with the 20 highest ORIs in the cdc28 experiment

Rank ORI Gene Functional class Specific function ORF (yeast final code)

1 0.0083 – – – YDR274C
2 0.0055 WSC4 Cell wall integrity Unknown YHL028W

and stress response
3 0.0034 – – – YOL101C
4 0.0032 PDC6 Glycolysis Pyruvate decarboxylase 3 YGR087C
5 0.0028 – – Similar to human zinc finger protein YPR031W

PIR:JC2069
6 0.0024 INO1 Inositol biosynthesis L-Myo-inositol-1-phosphate synthase YJL153C
7 0.0024 – – Similar to MAL regulatory proteins YFL052W
8 0.0024 – – – YHR217C
9 0.0023 – – – YKL086W

10 0.0023 – – – YDR355C
11 0.0023 – – Similar to glycophospholipid-anchored YOL132W

surface glycoprotein GAS1
12 0.0022 – – – YJR082C
13 0.0022 PDR12 Drug resistance Transporter YPL058C
14 0.0019 – – Similar to human retinoblastoma YJR119C

binding protein 2
15 0.0018 – – – YNR069C
16 0.0018 CDA2 Sporulation Chitin deacetylase YLR308W
17 0.00178 – – Similar to glucan 1,4-α-glucosidase YDL037C
18 0.0016 PRP16 mRNA splicing RNA helicase YKR086W
19 0.0016 – – – YNR067C
20 0.0016 – – – YPL222W
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make sense biologically. For instance, genes which code
for mating proteins, cell-cycle proteins and histones pop-
ulate the alpha factor list; genes expressed in low-glu-
cose conditions and other stress genes, cell-wall biogen-
esis genes, and cell cycle genes make the elutriation list;
and, fittingly, sporulation and meiosis genes head the
sporulation experiment list. Many of the important ORFs
identified by this method are still uncharacterized. 

Each structural component axis is an orthogonal direc-
tion in the gene-expression space. We examined whether

each of these directions is differentiated by functional
groupings of the genes by calculating the contribution of a
MIPS functional class (http://www.mips.biochem.mpg.de/
proj/yeast/catalogues/funcat/index.html) with respect to
the variance of the structural component axes of the
known genes. Figure 6a, b shows the distributions of rel-
ative contributions of two functional classes of genes
across the significant structural component axes for each
experiment. Figure 6c shows this analysis applied to the
genes identified by Spellman et al. (1998) as cell cycle

Table 7 ORFs with the 20 highest ORIs in the sporulation experiment

Rank ORI Gene Functional Class Specific Function ORF (Yeast Final Code)

1 0.0056 MIP6 mRNA export (putative) RNA-binding protein YHR015W
2 0.0046 SSP1 Meiosis Nuclear division and spore formation YHR184W
3 0.0046 PES4 DNA replication Suppresses DNA polymerase YFR023W

epsilon mutation
4 0.0043 SPR28 Sporulation Septin-related protein YDR218C
5 0.0041 – – – YOL015W
6 0.0041 – – – YOR255W
7 0.0041 – – Similar to phosphoribulokinase YGL170C

precursor
8 0.0040 HXT10 Transport Hexose permease YFL011W
9 0.0040 – – Similar to glycophospholipid-anchored YOL132W

surface glycoprotein GAS1
10 0.0040 – – – YEL023C
11 0.0039 SPS2 Meiosis Unknown YDR522C
12 0.0039 HXT14 Transport Hexose permease YNL318C
13 0.0038 SPR3 Sporulation Septin YGR059W
14 0.0038 – – – YGR273C
15 0.0037 – – – YJL038C
16 0.0035 SPO19 Sporulation GPI-protein,meiosis-specific YPL130W
17 0.0033 SPO21 Sporulation Unknown YOL091W
18 0.0033 NDT80 Meiosis Transcription factor YHR124W
19 0.0033 – – – YAL018C
20 0.0032 – – – YLR341W

Table 8 ORFs with the 20 highest ORIs in the diauxic shift experiment

Rank ORI Gene Functional class Specific function ORF (yeast final code)

1 0.0037 JEN1 Transport Lactate transporter YKL217W
2 0.0032 – – Similar to Sur7p YNL194C
3 0.0029 – – – YDL204W
4 0.0028 – – Similar to Tal1p YGR043C
5 0.0028 – – – YGR236C
6 0.0028 – – – YML128C
7 0.0025 GPX1 Glutathione metabolism Glutathione peroxidase (putative) YKL026C

(putative)
8 0.0024 HSP42 Cytoskeleton assembly Heat shock protein similar YDR171W

to HSP26
9 0.0024 SOL4 Unknown Similar to Sol3p YGR248W

10 0.0024 – – – YGR243W
11 0.0024 – – – YCR021C
12 0.0023 ACH1 Acetyl-CoA metabolism Acetyl-CoA hydrolase YBL015W
13 0.0022 HSP12 Glucose and lipid utilization Heat shock protein YFL014W
14 0.0022 CTT1 Oxidative stress response Catalase T YGR088W
15 0.0022 ACS1 Acetyl-CoA biosynthesis Acetyl-CoA synthetase YAL054C
16 0.0021 – – Similar to Stf2p YLR327C
17 0.0021 – – – YNL200C
18 0.0020 – – – YOR215C
19 0.0020 SAM1 Methionine metabolism S-adenosylmethionine synthetase YLR180W
20 0.0019 OM45 Mitochondrial organization Outer mitochondrial membrane YIL136W

protein
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Fig. 6 Proportion of variation
among known genes accounted
for, a by mating protein genes;
b by cytoplasmic ribosomal
protein genes; and c by pur-
ported cell cycle regulated
genes identified by Spellman 
et al. (1998)



regulated. The cytoplasmic ribosomal protein genes have
the most extreme distribution with significantly low vari-
ation (P<0.01) along 8 out of 18 cell cycle structural
component axes and extremely high variation (P<<0.01)
along the second axis of sporulation and the axis of di-
auxic shift and markedly along one axis of the cdc28 ex-
periment. The mating protein genes in our sample load
heavily to all five alpha factor axes but only onto two of
those in the other experiments. Finally, the genes identi-
fied as cell-cycle regulated by Spellman et al. (1998) did
not significantly contribute as a class to any of the cell
cycle axes in the cell-cycle experiments.

Discussion

Hierarchical clustering methods are currently the most
prevalent methods for analyzing genomic expression da-
ta and can be interpreted within the geometric frame-
work we present above. In gene clustering (e.g. Eisen et
al. 1998; Wen et al. 1998), the data are points in a condi-
tion space where an axis is an axis of expression level in
a particular hybridization and each array adds another di-
mension. Nearby genes share an expression pattern
across conditions, and groups of genes are clustered ac-
cording to the distances between their centers (which can
be calculated in a variety of ways). In condition, or array,
clustering (e.g. Alon et al. 1999), the data are points in a
gene expression space such as the one described above,
and nearby conditions share gene expression profiles. In
the context of CSA, condition clustering ignores the sys-
temic covariational pattern of a data cloud from related
conditions and groups the points according to their loca-
tions. That is, conditional clustering does not yield para-
metric structural relationships between different experi-
mental or phenotypic conditions; rather it produces a
heuristic classification which is difficult to relate back to
individual genes.

The significant contributions of functional classes to
individual structural component axes, particularly the cy-
toplasmic ribosomal protein genes, indicate that the
structural component axes identified by singular value
decomposition may in fact reflect functional divisions in
the yeast genome. Other classes of genes, such as genes
whose proteins are involved in structuring chromatin and
molecular chaperone genes, also support this correspon-
dence since their major influences seem restricted to par-
ticular structural component axes. However, none ap-
proaches the clarity of the cytoplasmic ribosomal protein
genes. This may be for several reasons. Our analyses of
the response coefficient distributions indicate that the ax-
es are picking up a systemic pattern of interaction in the
genome. The linear least squares fit of orthogonal axes
to the dataset by CSA may indeed isolate functionally re-
lated genes, but we may not know enough about the in
vivo functions of genes and the pathways in which they
operate to recognize that these axes are meaningful. In
this case, the genome would be functionally more inte-
grated than one would expect. However, it is likely that

the few conditions in an experiment are insufficient to
resolve these functional categories. In the alpha factor
experiment, for example, the entire centered dataset
forms a maximum-17 dimensional cloud in a 6,074 di-
mensional space. Consequently, the cell state can only
vary independently in 17 dimensions, and so the struc-
tural component axes we derive may be projections of
several meaningful structural component axes and not
biologically meaningful in themselves. This limitation is
not unique to our analysis and will disappear as the re-
sults from more microarray experiments become public-
ly available, and as these experiments explore widely di-
vergent conditions – the better to amass a large set of in-
dependent data and explore the range of possible cell
states.

These yeast datasets are noisy. The data points were
not replicated, and errors of yet unknown magnitude can
enter into every step of microarray and probe prepara-
tion, hybridization, and analysis. Although advances in
the technology will certainly help to reduce error, re-
searchers should use replicate data points in order to esti-
mate variation due to noise, thereby making the results
from their analyses more robust (e.g. White et al. 1999).
The problem of noise is not unique to CSA; clustering
techniques generally set an arbitrary threshold level of
induction or repression to choose which genes to analyze
(Eisen et al. 1998). Similar cut-offs could be applied in
CSA. Since we expect the noise to be unbiased, such cut-
offs would change the lengths of the structural compo-
nent axes but leave the directions largely unchanged.
Our permutation test identifies these more robust longest
structural component axes. Noise within the measure-
ments for genes above the cutoff presents a more serious
problem which replication will ameliorate.

To summarize, building upon the notion that a single
microarray experiment is a window into the gene expres-
sion state of a cell, we have developed an analytical
technique based on a geometric framework to highlight
structure in gene expression covariation in an experi-
ment, to compare the gene expression states of cells or
organisms under different conditions, and to find limits
on how genome expression can vary under these condi-
tions. Most importantly, we find that no particular groups
of genes characterize particular experimental conditions.
Instead, the particular structure of the coordinated ex-
pression of the entire genome characterizes a particular
experiment.

Any developmental or physiological process depends
on the coordinated expression of multiple genes. Molec-
ular genetics has long been handicapped by its inability
to probe these interactions in detail, charting instead the
expression of one or a few genes at a time in a limited
number of conditions. While this approach has been ex-
tremely fruitful, it has also promoted a gene-centric view
where the action of each gene is viewed isolated from its
context. Genome-wide expression technologies give us,
for the first time, the ability to study gene action compre-
hensively as a dynamical system. These new data strong-
ly show that the context-dependent systemic action of
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the whole genome and not the context-independent ac-
tion of individual genes governs biological function. Tra-
ditional analyses take a bottom-up approach where indi-
vidual genes are identified and attempts are made to in-
fer their interactions. The analysis we present here sug-
gests that a more efficient solution is to take a systemic
view of the genome, focusing on the state of the whole
cell or the whole organism and asking how individual
parts like genes participate in determining these states
and their biological functions.
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