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ABSTRACT

Motivation: A gene expression trajectory moves through
a high dimensional space where each axis represents the
mRNA abundance of a different gene. Genome wide gene
expression has a dynamic structure, especially in studies
of development and temporal response. Both visualization
and analyses of such data require an explicit attention to
the temporal structure.

Results: Using three cell cycle trajectories from Sac-
charomyces cerevisiae to illustrate, we present several
techniques which reveal the geometry of the data. We
import phase-delay time plots from chaotic systems theory
as a dynamic data visualization device and show how
these plots capture important aspects of the trajectories.
We construct an objective function to find an optimal two-
dimensional projection of the cell cycle, demonstrate that
the system returns to this plane after three different initial
perturbations, and explore the conditions under which this
geometric approach outperforms standard approaches
such as singular value decomposition and Fourier analy-
sis. Finally, we show how a geometric analysis can isolate
distinct parts of the trajectories, in this case the initial
perturbation versus the cell cycle.

Contact: junhyong.kim@yale.edu

INTRODUCTION

During physiological and developmental processes of an
organism, the molecular state of any given cell undergoes
a cascade of changes in coordination with other cells and
the environment. These molecular interactions have an
inherent temporal structure—they obey dynamical rules
and can be represented as trajectories through a state
space. Given recent advances such as microarray tech-
nology (Schena et al., 1995), a reasonable state space
for these trajectories is a high-dimensional gene expres-
sion space—where each dimension represents the mRNA
abundance of a different gene. However, microarray data
is characterized by a relatively high degree of noise, an ex-
tremely large number of variables, and a small number of

*To whom correspondence should be addressed.

measurements, exactly the opposite of typical time-series
data. Parametric approaches such as Fourier analysis may
be too constraining, hiding crucial aspects of the data,
while an analysis of the static structure of the data such
as singular value decomposition (SVD) will not reveal
most dynamical features. In this paper, we introduce two
dynamical analysis techniques for gene expression data:
dynamical structure visualization and geometric analysis
of quasi-periodic dynamics. We apply our analyses to the
well-analyzed Saccharomyces cerevisiae cell cycle data as
an example and demonstrate the strength of our method
using numerical simulations.

Trajectories through a state space can be (1) aperiodic
or strictly divergent, where the trajectory does not return
to the same state even in projections; (2) quasi-periodic,
where the trajectory is characterized by a few dominant
frequencies; (3) chaotic (where the trajectory does not
repeat, but is confined); or (4) random, where there are
lots of dominant frequencies. Biological dynamics are
unlikely to be random so, while randomness is important
as a null hypothesis, we do not focus on such trajectories.
Understanding chaotic dynamics requires long time series
and lots of data that for both biological and economic
reasons are prohibitively difficult for microarray analysis.
In this paper, we focus on quasi-periodic trajectories,
and we demonstrate how to extract periodic components
from such trajectories. It may seem that quasi-periodic
trajectories will be rare except in cases like the cell-
cycle. However, any gene that is regulated with at least
one on-off cycle will show a periodic signature. Thus
at the whole-genome level, we expect any sufficiently
dense time series to display periodic components unless
attention is restricted to a strictly divergent subset of
genes.

SYSTEM

We used Mathematica 4.0 (Wolfram, 1999) to analyze the
three yeast cell-cycle datasets—alpha-factor, cdc15, and
cdc28—with adjustments for missing data as described in
Rifkin et al. (2000) providing us with data for 5541 genes
(see Cho et al., 1998 and Spellman et al., 1998, for details
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of the experiments). The cdcl5 time series has samples
every 10 minutes from 10 to 290, except for 5 timepoints.
These we estimated by linear interpolation. The different
datasets arise from three different ways in which the
yeast cell cycle was arrested and synchronized prior to
measurement of gene expression over time. Dynamically,
they represent three different initial conditions for the
system. Given the periodic nature of the cell cycle, it
is evident that the activity of some subset of the genes
or linear combinations of gene expression levels will
show simple periodic dynamics with the frequency of
the cell cycle. If the dominant expression dynamics of
these genes is governed by a low-dimensional periodic
component, it will lie in some unknown subspace of the
high-dimensional state space of all the genes (6200 genes
for yeast). We investigated the geometry of these dynamics
in three stages: (a) locating and visualizing the possible
periodic dynamics in the state space; (b) projecting it onto
subspaces to estimate average trajectories with particular
properties; and (c) statistically characterizing the extent of
the periodic dynamics in the genome. We also demonstrate
how previous results (Rifkin et al., 2000) arise from the
geometry of cell cycle dynamics.

IMPLEMENTATION
Visualizing low-dimensional dynamical structure

Visualizing the data structure is a useful starting point for
analyzing time-series data, however, the high dimensional-
ity of expression array data causes a severe problem. With
thousands of variables, individual time plots fail to convey
the global dynamical structure. Standard ordination tech-
niques such as Principal Component Analysis yield a low-
dimensional summary of the static variation rather than
the dynamical variation. We import a technique from non-
linear dynamical systems analysis to obtain a low dimen-
sional picture of gene expression data that captures its dy-
namical features, although the short time-series prevents
us from taking full advantage of the technique.

Attractor reconstruction (Packard et al., 1980; Takens,
1981) characterizes the dynamics of a large number of hid-
den variables (i.e. the full phase space) from a measured
single variable if the variables are sufficiently coupled.
Under such conditions, measurements of the single vari-
able taken at two or more quasi-independent time points
provide qualitative information about the dynamics of all
the variables. Microarrays make measurements obtainable
for most of the variables, i.e. most of the gene expression
levels. (Of course, this does not take into account the effect
of the proteome or cellular conditions on these levels.)
Since the variables are too many to analyze efficiently, we
projected the trajectory onto a single vector direction in
the full gene expression space and then used the attractor
reconstruction technique to visualize the dynamics.

Given some vector direction v, let v, (1) = v -x(t) be
the projection of the vector-valued time-series x(¢) onto
v. Then v,(¢) is a one-dimensional time series that will
capture the dynamics of the low-dimensional periodic
signal if it intersects with the subspace of this compo-
nent. As mentioned, in a coupled system the qualitative
dynamics of an attractor in the full phase space can be
reconstructed from a time-delayed phase plot of a single
variable. These time-delayed variables are of the form
vy(t +nd), (n = 0,1,...,k — 1) where d is the time
and k is the embedding dimension of the attractor (in
all of our analyses d = 1 and k = 3). The time-series
captured by v,(7) can therefore be used to characterize
the dynamics of genomic expression and to geometrically
search for the subspace of periodic dynamics. The vector,
v, serves as a probe into the state space which, when im-
mersed into the low-dimensional subspace of the periodic
dynamics, displays a characteristic signal. We used SVD
to find orthonormal vector directions of increasing static
variation as candidates for the probe vector v (Rifkin et al.,
2000; Holter et al., 2000). The number of candidate probe
directions was sample size minus one for each data set.
We then selected the candidate direction that yielded the
smoothest non-intersecting trajectories. Standard attractor
reconstruction techniques attempt to find the best em-
bedding dimension of the data through iterative analysis
(Abarbanel et al., 1993). The yeast cell cycle time series
is much too short for such an analysis. Consequently, for
these data, the time-delayed phase plot is best considered
a data visualization device. The data are projected onto a
low-dimensional picture that best summarizes the global
temporal structure of the high-dimensional time series.

Figure 1 shows the periodic dynamics of the yeast cell
cycle in these time-delayed phase plots. In Figure 1(a), the
cell begins in a perturbed state from exposure to alpha-
factor pheromone and relaxes back to an oscillatory tra-
jectory with a period coincident with the cell cycle. Fig-
ure 1(b) and (c) show similar visualizations for the cdc15
and cdc28 experiments. In contrast, Figure 1(d) depicts
the reconstruction for a trajectory from a randomized time
series. Although the short time series does not permit ex-
acting assessment of the embedding dimension, under all
three experimental conditions, the periodic dynamics are
apparent in the three dimensional reconstruction and ap-
pear to settle to a plane after an initial perturbation. Within
the resolution of these datasets, the dynamics can be char-
acterized by a two-dimensional plane of oscillation with
the periodicity of a single cell cycle (but there may be
other significant components to the dynamics, see below).

Geometrical decomposition of dominant periodic
structure

Given dynamical trajectories with such periodic compo-
nents, an especially important statistic is the phase of each
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Fig. 1. Reconstructed trajectories from projections onto single SVD
axes: (a) Alpha factor, SVD axis 1; (b) Cdcl5, SVD axis 4;
(c) Cdc28, SVD axis 2; (d) Random 20 timepoint trajectory. For
comparison, the trajectories are plotted in the subspaces spanned
by the first three SVD axes for each: (e) Alpha factor; (f) Cdcl5;
(g) Cdc28.

gene with respect to the dominant frequencies. An ac-
curate assignment of a gene’s phase will reveal groups of
genes that turn on at the same time and possibly regulatory
dependencies between genes of different phase groups.
For data from two or more different genomes or different
environmental conditions, the phase relationship of the

genes can be used to assess whether individual genes
or some subset of the genome is acting in a temporally
concordant manner. Fourier analysis is a standard tool for
analyzing periodic dynamics; estimation of the Fourier
coefficients yields the dominant amplitude frequencies
and corresponding phase of the individual genes. How-
ever, Fourier analysis can be problematic for short and
noisy time series, especially if the dynamics contains a
non-periodic component (see below). To overcome its
limitations, we developed a non-parametric technique
based solely on the geometry of the data.

We can think of sinusoidal periodic dynamics at a par-
ticular frequency along a vector direction as a projection
(i.e. weighted sum) from a two-dimensional circular tra-
jectory. This is the geometrical interpretation of Fourier
decomposition of periodic trajectories. Conversely, if we
have a periodic dynamic in high dimensions at a particular
frequency, it will ‘inscribe’ a circular trajectory when pro-
jected onto some two dimensional plane. Each frequency
can be associated with a different two-dimensional plane.
The angular positions of the plane with respect to the
original basis vectors—here representing mRNA abun-
dances of the different genes—define the phase groups of
the genes with respect to the oscillation at that particular
frequency. Once such plane is obtained, we can assign
phases to individual genes as well as use the relationship
of planar subspaces to determine relatedness of global
periodic gene expression patterns between different ex-
perimental conditions. Looking for subspaces (in this case
planes) in which projections of multidimensional clouds
of points or trajectories have particular features (in this
case circularity) is an important technique of exploratory
data analysis (Friedman and Tukey, 1974). The key lies in
good characterizations of these interesting features.

For each time-series, we first selected an initial two-
dimensional plane with a pair of orthonormal vectors.
Next, we projected the original time-series, x (¢), onto this
plane. The projected trajectory was normalized against
a regular polygonal trajectory constructed by taking the
mean distance from the centroid to the datapoints and
the mean angle between the centroid and two successive
datapoints (see Figure 2(a) for an example). An ideal
single-period trajectory with a sinusoidal form would
circumscribe a circle on a two-dimensional plane. These
normalizing trajectories are approximations to this ideal.
We used the following objective function to indicate
departures from these polygonal trajectories:

S50 1proj (t + 1) — vproj (1)
3120 Aproj(t +1,1)

"= [poty (t + 1) — Upoty (1)
"= Apoly (t + 1,1)

f=

ey
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where vproj is the normalized time-series projected onto
the candidate two-dimensional plane, Apgoj(f + 1,1) is
the signed area of the triangle formed by vpoj(r + 1),
Uproj (), and the centroid, and vpoly and Apely are the
equivalent quantities for the regular polygonal trajectory.
The f statistic measures the ratio between the length of the
projected trajectory and the area swept by the trajectory
relative to the polygonal standard. We used numerical
optimization routines to search through the fifteen dimen-
sional space of significant static variation identified by the
SVD analysis (Rifkin et al., 2000). We call the resulting
two-dimensional planes the dominant frequency planes.
The trajectories projected onto the dominant frequency
planes for each of the three experimental conditions are
shown in Figures 2(a)—(c).

Since we are searching for the most circular two-
dimensional characterization of the time-series, our proce-
dure is a non-parametric decomposition for the dominant
frequency. The trajectories on the dominant frequency
planes can be projected back to individual gene axes
effectively extracting the signal component given by the
dominant frequency sinusoidal wave. As transcription
proceeds, different sets of genes will turn on, shifting
phases of gene expression (Spellman et al., 1998). Fig-
ures 2(d)—(f) show the trajectories for pairs of genes with
different phases. The top plot in each figure shows the raw
trajectories for both genes, while the bottom depicts only
the dominant frequency components.

Projecting the gene basis axes onto the dominant
frequency plane complements the decomposition of a
particular gene’s trajectory into dominant frequency and
other components. In Figure 3, the positive gene basis axes
divide the dominant frequency trajectory into phases of
gene expression. Alternatively these plots are the view of
the positive gene basis axes as seen through a transparent
dominant frequency plane. In Figure 3(a) the cdc genes
make a cell-cycle clock on the cdc15 dominant frequency
plane. In each of the panes in Figure 3 the cdc clock
for the particular experiment surrounds the trajectory.
Figure 3(b) portrays the view of all the gene basis
axes, while Figures 3(c)—(e) focus on particular groups
of genes, demonstrating gross consistency between the
experiments with some variation in the details (whether
biological or experimental). If the dominant frequency
trajectories were perfectly circular (and that component of
each gene’s trajectory perfectly sinusoidal) the gene basis
axis projection would cross the trajectory at its maximum
amplitude. Because these trajectories are discrete and only
approximately circular, the directions of the gene basis
axes approximate this ideal.

The three yeast experiments use different initial syn-
chronization techniques on different strains of yeast. If
the dominant frequency planes are significantly related to
each other, it would suggest that, despite the discrepancies
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Fig. 2. (a)—(c) Projected trajectories onto the dominant frequency
plane for each experiment. Axes are in log-relative expression units
for the basis vectors of the plane, linear combinations of actual gene
expression levels. The trajectories have been oriented so that the
approximate peak of HTA1 expression is at noon. (a) Alpha factor;
(b) Cdcl5; (c) Cdc28. (d)—(f) The dominant frequency signals
of pairs of genes which form basis waveforms for the projected
trajectories. The members of a pair of waveforms are orthogonal
to each other and the two for each experiment lie at 90° to each
other. The amplitudes have been scaled. (d) Alpha factor; (e) Cdc15;
(f) Cdc28.

in starting conditions and genetic background, all three
datasets share a similar dominant temporal interaction
pattern of gene expression levels. To this end, we com-
puted the pairwise canonical correlations between the
three planes. Any two planes will have vectors (one in each
plane) that are maximally correlated. This correlation and
the correlation between the orthogonal vectors to these
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Fig. 3. Cell cycle clocks: phases of gene expression illustrated by
projections of gene basis axes onto the dominant frequency planes
oriented as in figure 2 with the projection of the HTA1 positive
axis at noon: (a) Cdc genes (labeled by number) on the cdcl5
plane making a cell-cycle clock. Length is irrelevant in this plot;
(b) All genes on the alpha factor plane with the alpha factor cdc
clock marking the cell-cycle progression on the outside. Lengths are
proportional to the percentage of the variance in a gene’s expression
accounted for by the dominant frequency, or alternatively to the
angle between the dominant frequency plane and and the gene
basis axis; (c)—(e) Selected categories of genes projected onto the
dominant frequency claims for the various experiments with cdc
clocks around the outside. Lengths are as in (b): (c) Alpha factor;
(d) Cdcl5; (e) Cdc28.

vectors are the canonical correlation between the two
planes (Seber, 1984). This technique can be straightfor-
wardly extended to linear subspaces of any dimension.
Two random planes in a 5541 dimensional space will have
maximal correlation near zero with high probability (e.g.
the probability of a chance correlation as high as 0.08 is
on the order of 107%). In this reduced 15 dimensional

subspace, the mean maximal correlation between two
random planes is around 0.5. The maximal canonical
correlations between these planes (and their probabili-
ties based on a simulation) were: between alpha-factor
and cdcl5, 0.83 (p = 0.001); cdcl5 and cdc28, 0.86
(p = 005); cdc28 and alpha-factor, 0.74 (p = 0.03).
The correlations between the vectors orthogonal to these
maximally correlated vectors are all significant at p <
0.001. Furthermore, the various trajectories retained their
qualitative appearances after direct projection onto the
subspaces of the others, a result not to be expected if
the subspaces did not overlap. The dynamical subspaces
spanned by the three different experiments are identical.

Comparison to Fourier and static singular value
decompositions

To evaluate the efficacy of our non-parametric geometric
procedure, we simulated a dataset of expression levels of
5000 genes over 20 timepoints cycling with period 10
with varying phases and with amplitudes drawn from our
estimate of the alpha-factor cycle. The periodic dynamics
were assumed to follow a simple oscillation with each
vector component given by x; = a; sin(wt) + b; cos(wt),
where w determines the period and ¢; and b; determine
the phase. To each vector component, we added random
noise drawn from a normal distribution with mean zero.
The variance of the added noise was determined by
the actual variance of the yeast data with a varying
multiplicative factor ranging in successive simulations
from 0.15 to 1. For the Fourier analysis, we performed
a Fourier decomposition of the data matrix, found the
dominant frequency for each gene and took the mode of
this distribution of frequencies, and then projected the data
matrix onto the plane of that modal frequency. (Note that
this majority rules method is quite different in spirit from
our averaging method.) We also used SVD to estimate
the two-dimensional largest variance plane. Each estimate
was evaluated by computing a canonical correlation of the
estimated plane to the true plane.

Over this range of noise and for this simple oscillatory
dynamics, Fourier analysis, static SVD analysis (Rifkin
et al., 2000), and the method presented here all found
planes with similar canonical correlations to the true
plane (regressions of first canonical correlate on the noise
factor: 1.06 — (0.52+0.0029)x, 1.08 — (0.58 £0.0039)x,
1.07 — (0.57 £ 0.0036)x). However, it is unlikely that the
entire gene expression dynamics of a group of cells will
be confined to a single plane. Typical cells differentiate,
respond to environmental cues and perturbations, move,
age, and grow, not all of which will be repeated in
every cell cycle. In the current yeast dataset case, the
perturbations due to initial conditions, e.g. the alpha factor
arrest, induce directional deviations from the normal cell-
cycle as seen in Figure 1. In geometric terms, there may
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Fig. 4. Performance of cell-cycle estimate procedures against
torsion and noise (see text for details): (a) Fourier analysis; (b) SVD;
(c) Geometric decomposition The points are confined to a three
dimensional volume, so the estimated plane will (practically) always
intersect the true plane. Therefore the second canonical correlate,
not the first, is of interest.

be a directional component to the trajectory separate from
the cycle. Ideally, an analysis technique should be able
to discriminate between the dynamical contributions of
these cellular activities. To test this ability, in addition
to the random noise factor (ranging now from 0.5 to
2), we added a linear directional component to the data
such that the simulated cells corkscrewed through the
gene expression space. As the torsion of the trajectory
increased, Fourier analysis and SVD lost their ability to
estimate the true plane—even when Fourier analysis only
used the information from the actual cycling frequency—
while our geometric decomposition continued to isolate
the cyclic dynamics (Figure 4).

Geometry of the perturbations

The ability to separate cyclical from directional compo-
nents of the trajectory means that this geometric analysis
can also be used to partial out the fundamental cell-cycle
related expression activity and used to examine gene ex-
pression patterns related to other physiological functions,
such as the perturbations due to initial conditions. We be-
gin by assuming that our dominant frequency plane ge-
ometrically characterizes the cell-cycle related gene ex-
pression. We then looked for vector directions away from
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Fig. 5. The cell state relaxing back to the dominant frequency
plane along a perturbation axis for (a) alpha factor and (b) cdc15.
The trajectories have been smoothed for illustration by averaging
successive timepoints. The flow proceeds from bottom to top.

this plane with biological significance. Figure 1(a) shows
that in the first timepoints of alpha-factor experiment, the
cell state approaches the dominant frequency plane from
a distant initial condition. Given this apparent relaxation
into the cell cycle, the first five timepoints can be used to
estimate the direction of the perturbation. We searched for
a vector direction perpendicular to the common frequency
planes along which the trajectory varied the most for the
first five timepoints while varying the least for the latter
timepoints—the cycling timepoints. That is, we found a
vector direction which best explains the variation for the
first five time points while being least correlated with the
later time points. As Figure 5(a) shows, the perturbed cell
in the alpha factor experiment approaches the cell cycle
plane from an angle. We used canonical correlations and
a set of random vectors to assess whether certain func-
tional groups contributed to this perturbation axis more
and less than one would expect by chance (p < 0.05).
Genes whose proteins are involved in cell growth, divi-
sion, and DNA synthesis, chromosome structure, signal
transaction, mating and the cell cycle genes identified in
Spellman et al. (1998) contributed significantly more than
random; genes with proteins involved in protein destina-
tion, protein synthesis, and, more specifically, ribosomal
protein genes contributed significantly less. A particular
gene may be both perturbed and cycling because its trajec-
tory is a superposition of several components, and a gene
basis axis or subspace may lie significantly close to two
orthogonal subspaces.

After an initial displacement that affects some of the
cycling genes, the alpha factor trajectory streaks toward
the dominant frequency plane before beginning to cycle.
In comparison, cdcl5 the trajectory spirals towards the
cell cycle plane beginning its cycle from the outset (Fig-
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ure 5(b)). This spiral may indicate a division between the
dynamics of perturbation response and the dynamics of
normal cell cycle activity, a division which is not as crisp
in the alpha-factor experiment. In the cdc15 experiment,
the measurements were made on a heat-shock synchro-
nized temperature-sensitive cdc15-2 strain followed by a
shift back to a permissive temperature (Spellman et al.,
1998). The perturbation axis falls significantly in the sub-
spaces spanned by genes involved in metabolism, energy,
metabolism, stress response, and the previously identified
cell cycle genes, and is significantly orthogonal to the sub-
space spanned by genes involved in protein synthesis, pro-
tein destination, intracellular transport, and transcription.

DISCUSSION

The tools we present here are first steps towards analyz-
ing genome-wide gene expression data from a structural
dynamical systems view. But even these preliminary tech-
niques yield a biologically useful and consistent picture.
Within the resolution of the yeast data, we have demon-
strated that a low-dimensional periodic trajectory charac-
terizes the dynamics of the yeast cell cycle. The dominant
dynamical interactions of the genome for different initial
conditions are significantly related to one another and in-
volve the majority of the genome. However, the data has
coarse resolution and is noisy and short. Simulation exper-
iments suggest that the noise is not problematic because
the large number of genes readily reveals the global dy-
namical structure (data not shown). The time resolution at
approximately 10 minute intervals is somewhat coarse, but
we did not detect higher frequency dynamics within the
resolution limit of the data (but see Klevecz and Dowse,
2000). The shortness of the time-series is more problem-
atic. This prevents us from making any quantitative as-
sessment of the embedding dimension and other standard
dynamical analyses. Nevertheless, the results confirm the
suggestions of Klevecz and Dowse (2000) and Holter er
al. (2000, 2001) that the temporal dynamics of the gene
expression in the cell cycle are rather simple and show
how this simplicity becomes apparent in their geometrical
context. The notion that genomic dynamics must be com-
plicated arises, in part, from the combinatorial possibilities
for its very many components (Boguski, 1999). However,
in the yeast cell cycle, the dynamics of the large number of
genes are restricted to a moderate number of possibilities,
greatly limiting the possible global complexity. From a
systems viewpoint, the complexity is bounded by a set of
constraints, both temporal and physiological.

As early as the 1940’s, C.H.Waddington and M.Delbriick
speculated on the dynamical nature of molecular inter-
actions, especially about whether the entire genome is
strongly coupled or compartmentalized and whether the
cascade of molecular dynamics follows a sequence of

transitions between quasi-stable internal states (Wadding-
ton, 1939; Delbriick, 1949; Thom, 1983). These yet unan-
swered questions have important implications on how
we understand the cell at the whole genome level and
how we understand the molecular transitions involved in
differentiation and pathological responses. Unfortunately,
the number of measurements required to characterize the
biochemistry of a cell made any empirical explorations of
these ideas unfeasible. Large-scale gene expression anal-
yses, while not characterizing all of the relevant variables
in a cell, enable us to make reasonable approximations to
the states of cells under certain conditions. Genome-wide
time-series measurements of physiological (DeRisi et al.,
1997) or developmental (White er al., 1999) processes
may soon enable us to revive these long dormant biologi-
cal ideas with adequate data and forge them into a useful
tool in the shift from studies of a few genes to systemic
analyses of entire genomes.
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