
329

Virginie Orgogozo and Matthew V. Rockman (eds.), Molecular Methods for Evolutionary Genetics,
Methods in Molecular Biology, vol. 772, DOI 10.1007/978-1-61779-228-1_20, © Springer Science+Business Media, LLC 2011

Chapter 20

Identifying Fluorescently Labeled Single Molecules
in Image Stacks Using Machine Learning

Scott A. Rifkin

Abstract

In the past several years, a host of new technologies have made it possible to visualize single molecules
within cells and organisms (Raj et al., Nat Methods 5:877–879, 2008; Paré et al., Curr Biol 19:2037–
2042, 2009; Lu and Tsourkas, Nucleic Acids Res 37:e100, 2009; Femino et al., Science 280:585–590,
1998; Rodriguez et al., Semin Cell Dev Biol 18:202–208, 2007; Betzig et al., Science 313:1642–1645,
2006; Rust et al., Nat Methods 3:793–796, 2006; Fusco et al., Curr Biol 13:161–167, 2003). Many of
these are based on fluorescence, either fluorescent proteins or fluorescent dyes coupled to a molecule of
interest. In many applications, the fluorescent signal is limited to a few pixels, which poses a classic signal
processing problem: how can actual signal be distinguished from background noise?

In this chapter, I present a MATLAB (MathWorks (2010) MATLAB. Retrieved from http://www.
mathworks.com) software suite designed to work with these single-molecule visualization technologies
(Rifkin (2010) spotFinding Suite. http://www.biology.ucsd.edu/labs/rifkin/software.html). It takes
images or image stacks from a fluorescence microscope as input and outputs locations of the molecules.
Although the software was developed for the specific application of identifying single mRNA transcripts in
fixed specimens, it is more general than this and can be used and/or customized for other applications that
produce localized signals embedded in a potentially noisy background. The analysis pipeline consists of the
following steps: (a) create a gold-standard dataset, (b) train a machine-learning algorithm to classify image
features as signal or noise depending upon user defined statistics, (c) run the machine-learning algorithm
on a new dataset to identify mRNA locations, and (d) visually inspect and correct the results.

Key words: Single molecule, FISH, Machine learning, MATLAB, mRNA, Microscopy, Biological
image informatics

Single molecule RNA fluorescence in situ hybridization (smFISH)
is a relatively new technique that enables visualization of transcripts
in fixed cells or organisms. Several varieties of the technique have

1. Introduction

330 S.A. Rifkin

been demonstrated in the literature, which all yield the same
general kind of data: groups of pixels (spots) of relatively high inten-
sity against a background field of lower intensity (1–5).

Measurements of variation in gene expression have become
quite common in the literature of comparative biology. In
evolutionary-developmental biology, they often take the form of
traditional in situ assays for a set of homologous genes in different
species, which give qualitative information about spatial expression
patterns but are not quantitative. Evolutionary genetic techniques
include, for example, microarrays, RNA-Seq, and pyrosequencing,
which are usually relative measures of expression and have no spa-
tial information because they destroy the sample. smFISH yields
absolute counts of mRNA abundances with high spatial resolution.
The trade-offs are that it is relatively low throughput compared to
genomic techniques, and the signals are weaker than those in tra-
ditional in situ assays. smFISH is appropriate for questions that
require highly resolved measures of gene expression and/or an
explicit spatial context. Furthermore, because it only requires
sequence information, it can be used on nonmodel organisms as
long as sequences are available.

The software (10) discussed in this chapter was developed using
data from the technique of Raj et al. 2008 (1, 11), and so, I briefly
describe the experimental technique below. A comprehensive
description of the experimental protocol can be found in ref. 11 or
online at http://www.singlemoleculefish.com. A set of thirty to fifty
20-mer oligo probes is designed to be complementary to a target
transcript. These oligos are labeled at the 3¢ end with a fluorophore.
Probes are incubated with fixed samples (e.g., cells, tissue sections,
organisms) in a formamide-based hybridization buffer, and then
unbound probe is removed in a series of washes. Labeled samples
can then be imaged under a fluorescence microscope. When bound
to an mRNA in a fixed specimen, this set of oligos appears under the
microscope as a diffraction-limited fluorescent spot (Fig. 1).

Fig. 1. Example of smFISH spots. (a) A 7 × 7 pixel box centered around a clear mRNA spot. (b) A local intensity maximum
that is not an mRNA spot. (c) A marginal mRNA spot.

33120  Identifying Fluorescently Labeled Single Molecules in Image Stacks…

In my experience, using a wide-field epifluorescence
microscope, a probe set of at least 21 oligos is necessary to be able to
identify a localized signal above background. As a consequence of
this requirement for multiple oligos to bind and the relative unique-
ness of 20-mers in a genome, the technique is highly specific,
although like many sequence-based techniques, extremely similar
paralogs cannot be distinguished. Background fluorescence can
come from a few oligos binding to other molecules, unbound fluo-
rophores not being completely washed away, autofluorescence of
the sample, or out-of-focus light. These factors can be controlled
by checks during probe design, adjustments to the stringency of
the washes, judicious use of fluorophores, or modifications to the
microscopy setup. However, these modifications may involve trade-
offs that weaken the signal, and so, in many cases an appreciable
degree of background noise will have to be tolerated.

In the following discussion, I assume that the microscopist has
taken z-stacks through a sample, producing a series of two-dimen-
sional slices that can be concatenated into a three-dimensional
image. Furthermore, I leave it to the reader to segment the image
stacks. The details of how to do this will depend upon the particu-
lar type of specimen – in particular on the contrast between the
object boundary and everything outside, which may include other
confluent objects. There is not a single solution that will work for
everything, and reviewing various approaches is beyond the scope
of this chapter. The starting data for the single molecule identifica-
tion is an image stack and a segmentation mask that distinguishes
pixels that belong to an object from those that do not (Fig. 2). For
convenience in the discussion below, I refer to these objects as

Fig. 2. An example of a series of segmentation masks for the image on the far right.

332 S.A. Rifkin

“specimens”. They could be cells, small animals, anything. Cell is
unfortunately a technical term in MATLAB and objects can be
ambiguous, so I use specimen simply as a convenient specific identi-
fier for these segmented objects. The intensity pattern from a single
fluorescent molecule is called a spot.

The spot finding software is built around a machine learning
core and consists of four parts which are covered in detail below:
Subheading 3.2 – Manually annotate an image to create a gold-
standard dataset; Subheading 3.3 – Use the gold-standard dataset
to train a classifier to distinguish between spots representing mRNA
signals and noise; Subheading 3.4 – Apply the classifier to a new
image; Subheading 3.5 – Manually review and curate the results
which may include re-rerunning the training and subsequent clas-
sification. This software is modular and flexible. The annotation
component (Subheading 3.2) could be used on its own as a way to
manually identify spots (e.g., if only a few images need to be pro-
cessed). The machine learning component (Subheadings 3.3 and
3.4) uses the random forest algorithm (12–14), but this could
straightforwardly be modified for the user’s preferred classifier.
The reviewing software (Subheading 3.5) relies only upon a
particular data and file structure. As long as the output from a
classification algorithm can be translated into this data format, the
reviewing software can be used to manually review and correct the
results from any spot-classification program.

	 1.	Computer with sufficient RAM to process the image files.
	 2.	MATLAB (http://www.mathworks.com).
	 3.	spotFinding Suite (http://www.biology.ucsd.edu/labs/rifkin/

software.html).
	 4.	R (http://r-project.org).
	 5.	randomForest R package (http://cran.r-project.org/web/

packages/randomForest/).
The following MATLAB packages can be downloaded

individually but are also included with spotFinding Suite under
the BSD license.

	 6.	SC (http://www.mathworks.com/MATLABcentral/fileexchange/
16233).

	 7.	gfit2 (http://www.mathworks.co.uk/MATLABcentral/fileexchange/
22020).

2. Materials

33320  Identifying Fluorescently Labeled Single Molecules in Image Stacks…

The following MATLAB package can be downloaded indi-
vidually but is also included with spotFinding Suite under the
GNU GPL3 license.

	 8.	tiffread (http://www.embl.de/~nedelec/misc/).

The software is designed to work in a single directory. All data and
segmentation files, described in Subheading 3.1 below, should in
the same directory, and all files that the software generates will be
saved in this directory. The default file name for an image stack is
(dye) (UniqueStackidentifier).tiff. For example, the third image
stack labeled by the fluorescent dye TMR would be named tmr003.
tiff where 003 is the unique stack identifier. The default for the
segmentation file is segmenttrans(UniqueStackIdentifier).mat,
e.g., segmenttrans003.mat. The software allows a user to enter
image file names, segmentation file names, fluorophores, and
unique stack identifiers at the command line, but it is much quicker
and simpler (especially when processing many image stack files) to
ensure that files are in the default format before starting.

On Unix-like systems (e.g., Linux, Mac OS X), no modifica-
tions are needed to call R. On Windows, the software by default
assumes that the R executable is located at:
C:\\”Program Files”\\R\\R-2.9.0\\bin\\Rterm.exe.

If this is not correct, the user will need to locate this line in
trainFISHClassifier.m and classifyFISHSpots.m and replace it with
the correct location.

Matlab specific terms used in this chapter are defined in Table 1.
More detailed information can be found in the Matlab help
documents.

The software assumes that the segmentation and image files are in
a specific format. Assume that the images are z-stacks of two-
dimensional slices of size A × B pixels. The segmentation file is a
MAT file consisting of a cell array that the program assumes is
called currpolys. An entry in the cell array is an A × B pixel binary
image with 1 s denoting a specimen of interest and 0 s denoting
area outside the specimen. Often, a single image contains several
specimens to segment. It is convenient to store the segmentation
masks for each specimen together in a single file, each one being
stored in a separate cell in the cell array.

The software comes configured to read multi-image TIFF files
using the MATLAB function tiffread. An image stack consisting of
MATLAB doubles is created with the following commands:

3. Methods

3.1. Correctly Format
the Image and
Segmentation Files

334 S.A. Rifkin

stack = tiffread(stackFileName);
stack = double(stack.data);

If images cannot be saved in a tiffread compatible format, the
user will need to find these lines in the code and modify them to
read his or her particular image format. The subsequent program
represents the data stack as a three-dimensional array of doubles.

During the process of finding spots, several files are created.
The names of the training set files are based on the dye and the
transcript. For example, if TMR is used to label the C. elegans elt-2
transcript, the user might designate the dye as “tmr” and the gene
as “C_el_elt2”. The training set would then be stored in training-
Set_tmr_C_el_elt2.mat. Other files are associated with particular
stacks via the unique stack identifier. For example, tmr003_worm-
GaussianFit.mat contains the results of the spot finding program
run on the multi-image tiff file tmr003.tiff.

Command:
trainingSet = createFISHTrainingSet(stackName, probeName);

Once the appropriate files are in place and properly formatted,
the first step in finding spots is to annotate an smFISH image by
identifying examples of true spots and examples of sets of pixels
that are not spots. After the user identifies particular and segmenta-
tion files to use, a GUI window pops up, which allows the user to
do this manual classification. However, some preprocessing must
be done on the image to make this a manageable task. The size of
spot will depend upon the microscope magnification and resolu-
tion; by default, the software assumes a spot in two-dimensions fits
well within a 7 × 7 pixel square. A specimen of approximately
400 × 250 pixels will contain close to 100,000 of these 7 × 7 squares
in each slice. It would be impossible to go through all of these
manually, and so, preliminary ranking of the pixels is essential.

3.2. Creating
a Training Set

Table 1
Matlab terms used in this chapter

MAT file A binary, Matlab-specific data file format with the extension.mat

Cell array A data structure that can hold an assorted collection of objects. Think of it as an
integer-indexed set of bins (called cells) where any Matlab data structure can be
placed in a cell

Double A double precision floating point number

Struct Stuctured array. A data structure where each entry (value) is indexed by text (field)
and can be a cell array or number. These are especially useful for collecting
assorted information about a particular object (see Tables 3 and 4)

Function calls Matlab functions are called using the following format: outputArgu-
ments = functionName(inputArgument1, inputArgument2, …). A semicolon at
the end of a statement blocks output from being displayed on the screen

33520  Identifying Fluorescently Labeled Single Molecules in Image Stacks…

The software first identifies the local 3D intensity maxima in the
image stack. The idea is that a single fluorescent molecule will appear
as a diffraction-limited spot covering several pixels and that the inten-
sities of these pixels will decay at a roughly Gaussian rate from the
center. As a result, true spots will contain a central local maximum,
and so, only pixels that are local maxima need to be considered.
However, thousands of pixels will be local maxima. True spots should
be more fluorescent than nonspots, and so, ranking by intensity is a
natural way to order these maxima. However, some samples may
have nonuniform background across the sample and may have more
out-of-focus light in some slices. Instead of a straight ranking by
intensity, the software corrects for local background by performing a
morphological opening (see Note 1) and subtracting this opened
image from the raw image. The size of the structuring element used
for the opening is based upon the size of a spot in the user’s micros-
copy setup; by default it is a disk of radius 7. Other local background
correction procedures could be substituted if desired. The local max-
ima are then ranked by their background-subtracted intensities and
presented to the user for evaluation. Although the pixel intensities in
the image are manipulated in this step, all manipulations, whether
local background subtraction or intensity scaling, are for the user
interface only. All computational evaluations of the spots by the
machine learning algorithm are performed on the unadulterated raw
image. If there were a reason to adjust the images – for example to
remove a systematic increase in average intensity with z-position of
the slice – this could certainly be implemented (see Note 2).

The annotation GUI window called identifySpots3 (Fig. 3) has
several components. On the left is a 16 × 16 pixel image with blue
pixels (marked with “B” in the figure) against a background of
gray pixels. For display, each slice of the stack is scaled such that the
minimum pixel intensity is 0 and the maximum is 1, and the pixel
intensities on the display image are the scaled intensities. As men-
tioned above, this scaling is for display only. The blue pixel in the
ninth row, ninth column from the top is the local maximum at
the rank indicated by the “Spot Rank” slider. Other blue pixels in
the 16 × 16 field indicate other local maxima in the vicinity.

On the right-hand side of the window is a zoomed portion of
the entire slice centered on the pixel of interest. By default, this is
set to 512 × 512 pixels and is normalized for viewing such that the
minimal pixel value of the slice is 0 and the maximal value is 1. It is
sometimes useful to be able to see the pixel highlighted in blue on
the left against a background of more of the specimen. The seg-
mentation outline of the specimen is highlighted in yellow, and the
16 × 16 square on the left is outlined green.

Below this right-hand side image is a smaller image displaying the
entire slice with segmented specimens highlighted in red and outlines
of the areas depicted in the left and right larger images.

In the middle of the window is a stack of five 16 × 16 pixel
surface plots. The height and color of a pixel reflects its intensity.

336 S.A. Rifkin

Fi
g.

 3
. T

he
 a

nn
ot

at
io

n
GU

I.
Fo

r t
he

 p
ur

po
se

s
of

 th
is

 c
ha

pt
er

, b
lu

e
pi

xe
ls

 in
 th

e
le

ft
pa

ne
l a

re
 m

ar
ke

d
w

ith
 B

. O
th

er
 c

ol
or

s
ar

e
as

 n
ot

ed
.

33720  Identifying Fluorescently Labeled Single Molecules in Image Stacks…

If the current slice is n, the surface plots are the 16 × 16 pixel area
of the image on the left in (from bottom to top) slices n − 2, n − 1,
n, n + 1, n + 2. It is good practice to take z-slices close enough
together such that a spot will appear in at least two. This represen-
tation of five consecutive slices around a local maximum gives infor-
mation about the three-dimensional context of the putative spot.

Along the bottom of the window are a series of push buttons that
tell the software what should be done with the local maxima high-
lighted in the left image. The software will process local maxima in
order of rank. The slider below the right-hand side image allows the
user to jump to a particular rank. Finally, a series of text fields below
the images give information on the current slice, the number of
regional maxima (up to 1,000) that are left to evaluate, the number
of potential spots (local maxima) in the current 16 × 16 field of view,
and the number of local maxima that have been rejected or accepted
so far. On the far right, the current coordinates for the upper left
corners of the left and right images are listed for reference.

Collecting a training set entails assessing some number of these
local maxima and either accepting them as spots or rejecting them.
This consists of the following steps:

	 1.	Evaluate the slice. Look at the right, large image. Are spots
visible or does the entire image look fairly uniform? Slices at
the top or bottom of the stack may be outside the boundary of
the specimen and so may look rather uniform without clear
spots or definition (see Note 3). In this case, it is worthwhile
to press the Next Slice button. This will simply advance to
the next slice up and will neither accept nor reject any of the
blue local maxima in the current 16 × 16 field on the left. If
spots are visible, implying that the slice is within the specimen,
it is worthwhile to evaluate the local maxima.

	 2.	Decide on an appropriate local maximum rank to look at. By
default, the software starts with the top-ranked local maximum
in the initial slice. If there are spots in a slice, this should be an
unambiguous example of a true spot. After the user has
accepted a good number of solid spots and rejected many non-
spots, it might be worthwhile to include some more borderline
ones. Adjusting the Spot Rank slider is a quick way to jump
around the rankings to find intermediate cases. Jumping to a
new rank is done by moving the slider and then pressing one of
the Next buttons. This ranking is carried over between slices: if
Next Slice is pressed with Spot Rank slider on 75, the focal local
maximum in the next slice will be the one with rank 75.

	 3.	Evaluate the local maxima in the 16 × 16 image. While the focal
local maximum will be in the center, there may be other local
maxima in the 16 × 16 image. True spots could be close
together, in which case the 16 × 16 image would contain more
than one true spot. Usually, however, the nonfocal blue pixels

338 S.A. Rifkin

are just noise – random local maxima in the background. Good
spots generally show up in more than one slice (as long as the
slices are close enough together, ~0.4 mm), are roughly
Gaussian and regular in shape, and have a higher intensity than
the local background. A candidate spot can be rejected by
clicking on it. This turns it from blue to gray and also increases
the rejected spot count by 1. If the user makes a mistake, the
last action can be undone with the button Undo last. Clicking
on a gray pixel will change it to blue, thereby designating it as
a potential spot (see Note 4). When the user is satisfied that the
blue pixels that remain mark true spots, clicking Next and
Accept will store them, change their color to red, and increase
the “accepted spot” count accordingly. In some cases, none of
the blue pixels will mark real spots. Instead of clicking on each
one, the whole lot can be rejected by clicking Next and Reject.
Rejected pixels are changed to gray. If the remaining blue pix-
els are ambiguous, the user can remain agnostic so as not to
contaminate the training set by clicking Next and Nothing.
When a Next button is pressed, the software moves on to either
the next ranked local maximum or the local maximum with
rank indicated by the Spot Rank slider. Alternatively, the user
can move the focus to a particular location within the specimen
by clicking on it in the right-hand side image. The upper left
corner of the 16 × 16 pixel square is moved to the clicked
location.

	 4.	Decide whether to move to a new slice. If there are just a few
true spots in a slice, the user will quickly move through them
and start rejecting local maxima that are not spots. While it is
important to include local maxima that are not spots in the
training set as negative examples, this is rather easy, and it does
not make sense to process all 1,000 local maxima in a slice
before moving on to a new slice. In addition, it is not necessary
to include all the spots in a sample in the training set, and it
makes sense to include spots from multiple slices of the sample,
although whether this is strictly necessary is unclear. In practice,
around 100 accepted and 100 rejected spots works
well, especially because the training set can be augmented later
on by corrections to a classification (Subheading 3.5). The user
can switch to a new slice by clicking Next Slice and, if finished
collecting the training set, can press Finished to move on to the
next step.

Command:
trainingSet = trainFISHClassifier(trainingSet,0);

The output from the annotation is stored in two files.
goldSpots_(dye)_(gene).mat contains an X-by-3 array of doubles
where each row has the coordinates of one of the X accepted local

3.3. Train the Classifier

33920  Identifying Fluorescently Labeled Single Molecules in Image Stacks…

maxima (row, column, slice) in the matrix representation of the
image stack. rejectedSpots_(dye)_(gene).mat contains the rejected
maxima coordinates. These coordinates, along with the raw image
file are piped to a function that will calculate various statistics on
the maxima and train a classifier based on these statistics.

Statistics, or observations, of the data are a crucial part of any
classification scheme. Good statistics capture aspects of true spots
that distinguish them from noise. Designing a statistic is some-
thing of an art, but the usefulness of a statistic can be evaluated
post hoc based on how much importance the classifier assigns it. In
this software, most statistics are calculated on a square of pixels
centered around a local maximum. By default this is a 7 × 7 pixel
square but the size can be adjusted depending upon the usual size
of a spot in the user’s particular microscopy/camera setup. A few
of the default statistics use the 7 × 7 × 3 pixel box around the maxi-
mum. Most of the default statistics are based on measuring how
the pixel intensity drops off around the maximum under the pre-
diction and observation that good spots have a Gaussian profile.
Users can add their own statistical functions if desired. This requires
writing a MATLAB function that takes a two- or three-dimensional
array of doubles as input and outputs one or more statistics and
corresponding names. Users can use default statistics in the folder
spotFindingStatistics as templates and add the appropriate lines to
the function calculateFISHStatistics.m.

The software calculates statistics on the maxima in the training
set and outputs the results to a large matrix with one row for each
maximum, one column for each statistic, and a final column with
the classification index. This is then sent to the machine learning
classifier. The software currently uses the R implementation of the
random forest classifier called randomForest (12). In principle, the
user could substitute any classifier with fairly minimal code modifi-
cation. Random forests perform comparably to other machine
learning classifiers or better, are fast, and are amenable to paral-
lelization, which could be useful for processing large datasets. For
complete details about the theory and implementation of random
forests and in particular for information about how to set and
interpret the parameters it takes, readers are encouraged to consult
refs. 11–13. In brief, random forests are sets of decision trees that
are built using subsets of the training data – about two third of the
data end up being used for each tree. A tree consists of successive
branch points at which the dataset is recursively partitioned based
on a subset of the statistics with the goal of generating homoge-
nous partitions. At each recursion, the random forest algorithm
chooses a random subset of the statistics and finds a best partition
of the remaining set of data. The algorithm stores exactly how the
partition was made at each recursion in each tree. Classifying a new
local maximum consists of running its statistics down each tree in
the forest. Each branching point of each tree corresponds to a

340 S.A. Rifkin

particular partition based on a subset of the statistics, and
eventually the local maximum will reach a terminal leaf where it is
labeled as either a spot or not. Each tree in the forest performs this
classification with different combinations of subsets of the statistics
and votes as to whether the local maximum is a spot or not. The
majority decision is the final classification of the forest. Because
only two third of the training data is used to generate any given
tree, the remaining one third of the training data can be run down
the tree to generate an independent estimate the error rate of the
classification algorithm (12–14). The extent to which this error
rate can be extrapolated to novel data depends upon how represen-
tative the training set is of the novel data. The initial training set is
likely to be overrepresented for maxima where the classification is
clear, and so, this initial error rate will underestimate the actual
error rate on novel data. Subheading 3.5 describes two ways to
estimate a more accurate error rate for the final dataset.

randomForest outputs several files (all prefixed by trainingSet_
(dye)_(gene)) which can be used to assess the statistics and the
likely classification error. Of these, the most useful are listed in
Table 2.

Readers should consult refs. 12, 13 for other further
randomForest options. These can be passed to the randomForest
function via the tuneRF function call that can be found in
trainFISHClassifier.m.

After the classifier is trained, the software stores all of the clas-
sification data including the training set and input and output to
and from the random forest alogorithm in a structure called train-
ingSet stored in the file trainingSet_(dye)_(gene).mat.

Table 2
Output files from randomForest

.randomForest contains the trained classifier to be applied to novel data

_votes.txt
_margin.pdf

List and plot of the results of the voting across the forest for each maximum

_confusion.txt Estimate of the error rate. The first row consists of maxima annotated as nonspots;
the second row is for true spot annotations. The first column has numbers of
maxima classified as nonspots; the second column numbers represent maxima
classified as spots. The third column has rates of misclassification

_varImp.pdf Plot of statistic importance. This plot portrays two measures of the importance of
individual statistics to correct classification. Of the default statistics, intensity and
goodness-of-fit to a Gaussian often dominate the classification

_MDS.pdf Multidimensional scaling plot of the data classification. By default, this is a
two-dimensional representation

34120  Identifying Fluorescently Labeled Single Molecules in Image Stacks…

Commands:
worms = evaluateFISHImageStack(stackName,1);
worms = classifyFISHSpots(dye, uniqueStackIdentifier, probe-

Name, optional(worms));
After the classifier is trained with the initial training data, it can

be applied to novel data. As for the training data, this requires seg-
mentation and image files in the proper format (Subheading 3.1).
As before, local maxima are identified and ranked in the
three-dimensional image according to their local background sub-
tracted intensities. The number of local maxima depends upon
many factors including the size of the image stack, the concentra-
tion of mRNA, and the microscopy setup, but it can run upward of
1% of the pixels. This could be tens of thousands of local maxima.
Computing and evaluating statistics for each of these would be
computationally intensive and completely unnecessary, since the
vast majority is just spurious noise. The challenge lies in determin-
ing when to stop without imposing user-dependent thresholds or
cutoffs (cf. (1)). The software takes the following approach:

	 1.	Start with the highest ranked local maximum and proceed in
rank order.

	 2.	Calculate the statistics for the local maximum. These will be
the same set of statistics used for the training set.

	 3.	Extract the statistic that measures goodness-of-fit to a Gaussian
(see Note 5) and store it in an array. Along with intensity, this
is usually one of the most relevant statistics for classification.

	 4.	Go to step 1 until the first 30 local maxima have been evalu-
ated meaning that the goodness-of-fit array is of length 30.

	 5.	Find the 60th percentile of this array.
	 6.	If the goodness-of-fit statistic for the 60th percentile is below

0.9, stop. If not, then continue down the ranked list as in step
1, adding the goodness-of-fit statistic to the array. Maintain an
array of length 30, i.e., if the software has just processed the
local maximum with rank 45, then the goodness-of-fit array
would contain statistics from ranks 16 to 45. If at any point the
60th percentile drops below 0.9, then stop (see Note 6).

Once the list of candidate local maxima has been identified, the
software passes the randomForest R function a matrix comprised
of their statistics along with the random forest file from the train-
ing set. The machine learning program runs the data from each
maximum down the decision trees in the forest. Each tree classifies
the local maximum as a spot or not, and the final classification is
decided by a majority vote. The classification for all of the candi-
date maxima is passed back to MATLAB.

MATLAB generates several files in the course of evaluating
these local maxima. They are uniquely labeled by the image stack

3.4. Apply
the Classifier
to a New Image

342 S.A. Rifkin

name and the number of the specimen in the segmented image.
For example, if the image stack contains five specimens, the nam-
ing convention might be RFtestdatamatrix_tmr003_w3.txt where
tmr003 is the unique stack identifier and this is the statistics matrix
for the third specimen. The classification is stored in a cell array of
structs called worms in the file tmr003_wormsGaussianFit.mat.
Results from each specimen in the image stack will have its own
struct in the cell array, and further functions in the software work
with this data structure (Table 3). The use of “worms” and “w” in
file names and in the software itself reflects its history of being
developed and tested with data from nematodes.

One of the fields, spotInfo, contains information specific to a
local maximum (Table 4).

Command:
reviewFISHSpotClassification(dye, uniqueStackIdentifier, worms);

The final step in identifying mRNA spots consists of reviewing
the automated classification and refining the classifier. The initial
training set is likely to have an overabundance of easily classified
local maxima. As a result, the classifier will not do an optimal job
of classifying borderline cases. The manual review component of
the software allows the user to correct misclassified local maxima
and to add these to the training set. A new classifier can then be
trained based on the augmented training data and applied to the
image to generate a revised classification. As might be expected,
adding marginal local maxima to the training set quickly improves
the accuracy of the classifier. Perfect automated classification,

3.5. Manually Review
and Curate
the Classification

Table 3
The fields in the struct worms{i}

mask A binary image that is the segmentation mask for the specimen

boundingBox A stuct containing the BoundingBox measurement from MATLAB’s regionprops
function

regMaxSpots An Nx5 double array. Each row corresponds to a local maximum with the informa-
tion: [row, column, slice, raw intensity, filtered intensity]

spotInfo A cell array containing information about the local maxima evaluated

goodWorm Indicates whether something is wrong with the specimen (0) or not (1)

spotsFixed Indicates whether the spot classifications have been reviewed (see Subheading 3.5)

probeName Name of the smFISH probe

RFNSpots Number of local maxima classified as spots by the randomForest algorithm

trainingFileName Name of the training set file used for the classification

nSpotsFinal Final count of spots. Manual review and curation could change this

34320  Identifying Fluorescently Labeled Single Molecules in Image Stacks…

while theoretically possible, should not be the goal. As mentioned
in Subheading 3.3, the randomForest function returns an estimate
of the error rate based on the training data. The error rate for any
given specimen can be calculated directly using the GUI described
in this section. If the error rate is reasonably low, the user can
choose to correct misclassified spots manually using the GUI (pre-
sumably achieving a perfect classification, at least in the eye of the
user) or to deem the error rate acceptable and account for it in
subsequent analyses. The user should refer to step three in
Subheading 3.2 for criteria to use in evaluating spots. It can also
be useful to switch between maximum merge and individual slice
views in the reviewing GUI (see below, Fig. 4) to compare spot
intensities between slices. In many samples, the distinction between
spots and nonspots is stark and easy to score. In others, there
will be more ambiguity. It might be useful to look at many
stacks to get a feel for the variation in spot morphology and
intensity, including negative controls where potential spots simply
reflect noise.

The reviewing GUI window contains several images, informa-
tion fields, and buttons (Fig. 4). On the left is a 25 × 25 grid of

Table 4
Fields in worms{i}.spotInfo{j}

Locations A struct containing [row, column, slice] location of the local maximum (a) in
the entire stack and (b) relative to the BoundingBox of the specimen

rawValue Raw intensity of the local maximum

filteredValue Intensity of the local maximum after background subtractions

spotRank Rank of the local maximum after background subtractions

dataMat A square matrix of pixel intensities (default 7 × 7) centered on the local
maximum

directory A cell array containing the path to the working directory which contains the
data and output files

dye Fluorescent dye

stackSuffix Unique identifier for the image stack

wormNumber Specimen number (based on segmentation) within the image

statNames The names of the statistics in the column order of the data

statData The statistics calculated on the local maximum

machLearnResult A quantitative measure of the machine learning classification. For the random
forest algorithm, this is the fraction of trees that voted for spothood

classification A struct containing the classification from the machine learning algorithm and
the final classification, which could be modified after review

344 S.A. Rifkin

Fi
g.

 4
. T

he
 re

vi
ew

in
g

GU
I.

Co
lo

rs
 in

 th
e

ac
tu

al
 d

is
pl

ay
 a

re
 a

s
m

ar
ke

d.

34520  Identifying Fluorescently Labeled Single Molecules in Image Stacks…

evaluated local maxima and their (by default) 7 × 7 pixel surroundings,
extracted from the image slice they are found in after scaling all
intensities to lie between 0 and 1. For compactness, I refer to this
7 × 7 box as the spot box. Each spot box is initially edged in blue or
yellow. A blue border means that the local maximum was classified
as an mRNA spot. A yellow border means that it was rejected.
Local maxima that are included in the training set have diagonal
lines across their spot boxes. The spot box in current focus is high-
lighted by a red boundary (the focal maximum). The user can navi-
gate around this grid using the mouse by clicking on different spot
boxes or by the arrow keys. Only 625 spot boxes fit on a screen;
page up/down will scroll to the next set. The local maxima are
arranged in order of the fraction of spot votes they received in the
random forest voting, from those that were unanimously classified
as true spots to those that were unanimously rejected. This results
in questionable calls being primarily grouped near each other
around the place where blue boundaries yield to yellow ones. The
GUI opens with the most marginal good spot in focus.

Below the spot box grid are two 7 × 7 pixel images. These por-
tray the spot box in current focus. In the left one, the raw pixel
intensities are tinted blue with the regional maximum tinted pink.
The right one is gray scale and is equivalent to the scaled spot box
in the large left image.

On the right-hand side of the GUI window is a large image
that shows the specimen. The focal maximum will generally be in
the middle unless its position relative to the bounding box of the
specimen does not allow this. The putative spot is marked by a red
arrow that can be toggled on or off. Initially, the large image con-
tains the slice of the focal maximum. A toggle button below the
image switches to a maximum merge across slices. Provided the
mRNAs are not too dense, a true spot should show up in the maxi-
mum merge as well as in its own slice. A slider below the image
allows the user to zoom from 1× to 6×.

Three surface plots in the middle of the window show the spot
box and the 7 × 7 pixel squares above and below it. A toggle button
allows the user to flag a specimen as bad, although bad specimens
were probably flagged earlier in the pipeline. The window has text
fields reporting the number of accepted and rejected spots, the
number and direction of any corrections, and some identifiers of
the focal maximum. A checkbox in the lower right indicates
whether the image stack has already been reviewed or not.

Three buttons in the middle of the window help the user
review and correct the classification. If the classification for the
focal maximum is incorrect, the user can correct it from bad to
good by clicking Good Spot and from good to bad by clicking Not
a Spot. When the user changes a spot from bad to good, the yellow
boundary changes to cyan, the numbers are updated, the local
maximum is added to the training set, and the focus shifts to the

346 S.A. Rifkin

next spot box. The same is true for the converse except that the
boundary changes from blue to orange. A third button, Add to
trainingSet, allows the user to add a local maximum to the training
set without changing the machine classification. This option is use-
ful for adding marginal, but correctly classified, examples to the
training set.

At the bottom of the right-hand side of the window lies a but-
ton called Redo classifySpots. Clicking this button retrains the clas-
sifier on the training set, which has been augmented by any
corrections or additions, and then reruns the classification on the
current image stack. The GUI images will be updated to reflect
this latest classification. The user can repeat this process until satis-
fied with the performance of the machine learning classifier.
However, unless the user manually reviews each image stack in a
dataset (making the user the final classifier), it is important to use
the same iteration of the classifier on all the images in the dataset
to avoid artifacts introduced by improvements in the training set.

All corrections are stored in the worms data structure. Final
classifications are stored in the classification field of spotInfo
(Table 3). The user can write a MATLAB script to cycle through
them and collect absolute counts of single molecules or use the
locations field to perform a spatial analysis.

	 1.	In mathematical morphology, opening is an erosion followed
by a dilation of an image by a smaller set of pixels called a struc-
turing element (for example, a square of area 25 pixels or a disk
of radius 7 pixels). The process can be pictured as follows:
Imagine that the image is a landscape where the height above
sea level reflects the pixel intensity. Opening an image is the
equivalent of taking the structuring element, holding it hori-
zontally, and running it along the underside of the landscape
and recording the maximum height achieved by the structur-
ing element at each pixel location. A small structuring element
will track the surface with good fidelity, only lowering tiny
bumps that are smaller than it is. A large structuring element
will be too big to be pressed up into most hills and will end up
razing the landscape. A structuring element that is larger, but
not too much larger, than the real features of the image will do
a decent job of capturing the varied local background of the
features. The program then subtracts this background estimate
from the actual image and uses the pixel values of the result to
rank local maxima.

4. Notes

34720  Identifying Fluorescently Labeled Single Molecules in Image Stacks…

	 2.	For ranking purposes, most systematic differences in the raw
intensities of the slices will be removed by the local background
correction. However, because the machine learning algorithm
works with the raw data, large differences in intensity between
slices could reduce the usefulness of intensity as a diagnostic
statistic. Normally, intensity is one of the most important sta-
tistics. For this reason, it may be a good idea to adjust the raw
intensities to remove any systematic, noninformative differ-
ences between slices.

	 3.	Because of the slice-based normalization, out-of-focus slices
and slices without any spots will usually appear bright even if
their average raw intensities are low. Because the intensity of
these slices comes from noise, the average pixel intensity will
fall around 0.5. Slices that contain true spots would ideally
have bright pixels around spots and very low pixel intensities
elsewhere.

	 4.	If the ranking algorithm works as designed, it should be rarely
necessary to change a gray pixel to blue, thereby designating a
nonlocal maximum as a spot. This could happen if molecules
are close together and their coronas overlap such that one
obscures the other. Usually, though, each will be a local maxi-
mum, but they will be closer than 7 pixels from each other.
The machine learning algorithm does a surprisingly good job
of identifying such pairs or triplets as individual spots even if no
such overlapping spots are contained in the training set.
Because local maxima are identified in three dimensions, there
will be bright pixels that clearly radiate intensity that are not
marked with blue. In these cases, the surface plots of the neigh-
boring slices will show that this pixel belongs to a local maxi-
mum from a neighboring slice.

	 5.	The goodness-of-fit statistic is calculated as follows. First one-
dimensional Gaussian parameters are estimated from the (by
default) 7 pixel horizontal and vertical slices through the maxi-
mum intensity pixel. The mean squared error of each of these
slices from an ideal Gaussian distribution is calculated, and the
goodness-of-fit statistic is the square root of their average mean
squared error.

	 6.	There is a crucial distinction between the cutoffs here and the
cutoffs used in threshold-based procedures for identifying
spots (1). Spot classification is done by the machine learning
algorithm. Evaluating all local maxima would certainly be pos-
sible, but it would be overkill. The cutoffs here are designed to
preselect a set of local maxima that is empirically guaranteed to
contain all true spots. There are two cutoffs in this procedure:
the 60th percentile and the 0.9 threshold for the statistic.
These only determine the lowest ranked local maximum that

348 S.A. Rifkin

will be evaluated by the classifier. These cutoffs were empirically
chosen such that they will never exclude any potential spot.
Because they are so conservative, the software will include many
more maxima than will be true spots. To modify the values of
these parameters, change the values for cutoffPercentile and
cutoffStatisticValue in the file evaluateFISHImageStack.m.

References

	 1.	 Raj A, van den Bogaard P, Rifkin SA et al
(2008) Imaging individual mRNA molecules
using multiple singly labeled probes. Nature
Methods 5:877–879

	 2.	 Paré A, Lemons D, Kosman D et al (2009)
Visualization of individual Scr mRNAs during
drosophila embryogenesis yields evidence
for transcriptional bursting. Curr Biol 19:
2037–2042

	 3.	 Lu J, Tsourkas A (2009) Imaging individual
microRNAs in single mammalian cells in situ.
Nucleic Acids Res 37:e100

	 4.	 Femino AM, Fay FS, Fogarty K et al (1998)
Visualization of single RNA transcripts in situ.
Science 280:585–590

	 5.	 Rodriguez AJ, Condeelis J, Singer RH et al
(2007) Imaging mRNA movement from tran-
scription sites to translation sites. Seminars Cell
Dev Biol 18:202–208

	 6.	 Betzig E, Patterson GH, Sougrat R et al (2006)
Imaging intracellular fluorescent proteins at
nanometer resolution. Science 313:1642–1645

	 7.	 Rust MJ, Bates M, Zhuang X (2006) Sub-
diffraction-limit imaging by stochastic optical

reconstruction microscopy (STORM). Nature
Methods 3:793–796

	 8.	 Fusco D, Accornero N, Lavoie B et al (2003)
Single mRNA molecules demonstrate probabi-
listic movement in living mammalian cells.
Curr Biol 13:161–167

	 9.	 MathWorks (2010) MATLAB. Retrieved from
http://www.mathworks.com

	10.	 Rifkin SA (2010). spotFinding Suite. http://
www.biology.ucsd.edu/labs/rifkin/software.
html

	11.	 Raj A, Tyagi S (2010) Detection of individual
endogenous RNA transcripts in situ using mul-
tiple singly labeled probes. In: Walter NG (ed),
Single Molecule Tools: Fluorescence Based
Approaches, Part A. Academic Press

	12.	Liaw A, Wiener M (2002) Classification
and regression by randomForest. R News 2:
18–22

	13.	 Breiman L (2001) Random forests. Machine
Learning 45:5–32

	14.	 Breiman L, Cutler A (2001) Random Forests.
http://www.stat.berkeley.edu/~breiman/
RandomForests/cc_home.htm

	Chapter 20: Identifying Fluorescently Labeled Single Molecules in Image Stacks Using Machine Learning
	1. Introduction
	2. Materials
	3 . Methods
	3.1. Correctly Format the Image and Segmentation Files
	3.2. Creating a Training Set
	3.3. Train the Classifier
	3.4. Apply the Classifier to a New Image
	3.5. Manually Review and Curate the Classification

	4. Notes
	References

