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SUPPORTING ONLINE MATERIAL 

 
MATERIALS AND METHODS 

Mutation accumulation 
Eight independent lines were derived from a single haploid ancestor derived from FY10 
(Mat-a, leu2Δ1, ura3-52) (1), a strain isogenic with the reference strain s288c. These 
lines were maintained on standard YPD (yeast extract-peptone-dextrose) solid plates.  
Approximately every 20 generations, a single colony was used to produce new colonies 
in the next generation by streaking and plating cells. This propagation scheme represents 
a single-cell bottleneck every 20 generations, resulting in an effective population size of  
~10 as calculated using the harmonic mean of the population sizes. At this population 
size, the fixation or loss of most mutations will be determined by random genetic drift 
and not natural selection. Only selection coefficients larger than the reciprocal of the 
population size (10%) have a significant effect on the fate of new mutations, and these 
are expected to be rare (2, 3). There is no direct estimate of the rate of nucleotide 
substitution in yeast, but the per-genome mutation rate has been estimated to be around 
0.003 in S. cerevisiae (4). Pairs of strains that have diverged for 8,000 generations are 
therefore expected to differ by ~30 nucleotide substitutions. Other perturbations are also 
likely to contribute to gene expression evolution in those lines. For instance, the rate of 
duplication of a gene is of the same order of magnitude as the rate of mutation per 
nucleotide site (5). High rates of expansion and contraction of low complexity regions, 
which are abundant in the yeast genome (6) and are known to contribute to phenotypic 
diversity (7), may also contribute to evolution of gene expression. Finally, at least two of 
these lines became diploid during the course of the experiment (W. K. Thomas, 
unpublished). 
 
Gene expression analysis 
Four mutation accumulation lines (MA-lines) and the ancestral strain were expression 
profiled. Two fresh colonies per line were grown in parallel on each of two separate days 
for a total of four replicates. A colony was diluted in 5 ml of YPD and the equivalent of 
25,000 cells was used to inoculate 40 ml of liquid YPD. Cells were then grown overnight 
at 30°C and 180 rpm in 500 ml flasks and harvested by centrifugation in the morning at 
an optical density between 0.8 and 1. Cultures were then centrifuged at 3,500 rpm for 20 
minutes at room temperature and the pellets were flash frozen in liquid nitrogen. Two 
samples of each strain from two separate days were pooled prior to RNA extraction. 
There were a total of 2 extractions per strain. Frozen cell pellets were suspended and 
extracted with hot acid phenol/chloroform extraction. Total RNA was ethanol 
precipitated, washed and resuspended in TE buffer. RNA quality was confirmed by 
spectrophotometric analyses with A260/A280 ratios ~ 2.  cDNA synthesis, labeling and 
hybridization were performed using 3DNA Array 50 Kit Version 2 (Genisphere Inc, 
Hatfield, PA) according to the manufacturer’s protocol using 25 ug of total RNA. The 
samples were hybridized on arrays containing 6,388 unique probes (Qiagen Operon, 
Valencia, CA) printed on poly-L-lysine coated slides (Erie, Portsmouth, NH) according 
to standard protocols (www.microarray.org) and blocked according to Diehl et al. (8). A 
loop design was used, as it maximizes the number of replicates for the number of arrays 
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used (9, 10). All the samples (four derived and the ancestral strain) were compared to 
each other, for a total of four replicates per strain (fig. S5). The arrays were scanned on 
an Axon GenePix 4000B Scanner (Axons Instrument, Molecular Devices, Sunnyvale, 
CA) and the images were analyzed using GenePix Pro 5 (Axons Instrument, Molecular 
Devices, Sunnyvale, CA). Spots of poor quality were flagged manually and eliminated 
from the downstream analyses. Only spots with foreground intensity higher than the 
background intensity plus two standard deviations were conserved. A total of 5,688 genes 
met these criteria. Normalization of the raw intensity was performed using methods 
implemented in the library Limma of the statistical software R (11-13). In order to make 
ratios of intensities independent of the absolute signal, background-subtracted intensities 
were normalized for each quadrant independently using the method loess and this in 
order to make data consistent across the array. Finally, the distributions of intensities 
across the experiment were normalized to have the same median-absolute-deviation by 
scaling the log-ratios. Raw data were deposited to the NCBI GEO database, series 
reference number GSE7537.  
 
Significant changes in gene expression were assessed using Bayesian statistics as 
implemented in BAGEL (10, 14) using default parameters, which assume that all nodes 
have the same error variance. We estimated changes among the four MA-lines using the 
Bayesian posterior probability (BPP) of differential expression. We estimated the 
proportion of false positive tests at different BPP thresholds by randomizing the data 
matrix and running BAGEL on the randomized data (15). The proportion of false 
positives estimated this way is presented in Fig. 1B for different BPP thresholds. A 
threshold BPP of 0.99 was chosen because it best minimized type I and type II errors. 
BAGEL returns relative expression among the strains.  In order to measure the rate of 
evolution of gene expression among those mutation accumulation lines, we estimated 
mutational variance (Vm) (16) using the variance of the log-transformed gene expression 
estimates from BAGEL of the four MA-lines, in an approach similar to (17).   The 
relative fold changes (Fig. 1C) were calculated as the maximum expression level over the 
minimum expression level among the four MA lines. 
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In order to test which classes of genes, if any, were associated with high or low Vm , we 
separated genes with significant variation among the lines into high and low Vm classes 
(top 50 percentile (n = 1016), lowest 50 percentile (n = 1015)). We then assigned those 
genes to Gene Ontology Biologcial process and Molecular Function classes using Super 
GO-Slim (Sachharomyces Genome Database, SGD: http://db.yeastgenome.org/cgi-
bin/GO/goTermMapper). Within each of those classes, genes were assigned to categories 
described in Fig. S2.  Since these categories can be overlapping, we compared the 
distribution of number of genes of the low and high Vm classes in each GO category 
separately and corrected for multiple testing as follows. Each gene assignment to one GO 
category can be seen as a success or a failure. We therefore used a 2-sample test for 
equality of proportions (χ2) to test for differences in success rate for the assignment of 
genes to each category for the low and high Vm groups. The results are presented in Fig. 
S2. 
 
In order to investigate which features of the yeast regulatory network may affect the 
neutral rate of gene expression evolution, we obtained data from several public sources.  
First, we mapped the transcription factor binding sites using a map of regulatory elements 
that combines Chip-chip experiments (18) and computational predictions available from 
ftp.stanford.edu/pub/yeast/chromosomal_feature/scerevisiae_regulatory.gff (accessed on 
August 8, 2006). In this database, the identity of DNA-binding proteins and the position 
of the binding sites are provided. We assigned a binding site to a gene when it was within 
1kb upstream of the translation start site using the position of ORFs available through 
SGD. mRNA abundance was obtained from (19) and corrected protein abundance (Ave. 
YEPD) and noise in protein abundance in rich medium (DM_YEPD) from (20).  DM is a 
corrected measure of noise in tagged-protein abundance that allows for direct 
comparisons of levels of noise among proteins without confounding factors such as 
protein abundance.  Data on TATA box and gene expression responsiveness (“plasticity”) 
across environments were obtained from (21). Note that expression responsiveness is 
directly linked to the abundance of mRNA of the gene. However, protein noise integrates 
both transcription noise and translation noise.  The presence of a TATA-box is known to 
influence transcription efficiency (22), which is directly related to noise in transcription 
(23).  This may explain the stronger association between Vm in gene expression and 
protein expression noise for genes with a TATA-box (Supplementary Table 4). 
 
Genes involved in stress response were identified as follows. Gene Ontologies were 
obtained from the Saccharomyces Genome Database 
(ftp://ftp.yeastgenome.org/yeast/data_download/literature_curation/orf_geneontolo
gy.tab).  Stress related genes were identified as genes with GO Biological Process 
containing the term stress: response to osmotic stress, response to oxidative stress, 
response to salt stress and response to stress.  
 
In order to estimate the trans-mutational target size (fraction of other genes in the 
genome that affect the expression of the focal gene) we obtained gene expression levels 
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from 300 perturbations from (24).  In this experiment, expression profiling was 
performed on more than 300 genetic perturbations in S. cerevisiae. We eliminated 23 
experiments because they were either chemical perturbations or perturbations performed 
with titrable promoters and not gene deletions. For each gene in the database, we 
computed the probability of differential expression or trans-mutational target as the 
fraction of genetic perturbations that changed the expression level of the focal gene using 
P-values < 0.01 (24).  
 
In an attempt to partition the variation in Vm across genes, we constructed a Generalized 
Linear Model (log-transformed GLM with gaussian link) in R (11) including trans-
mutational target size, presence of a TATA-box and cis-mutational target size as 
predictive variables the. This analysis shows that both the size of the trans-mutational 
target and the presence of a TATA-box independently explain a significant fraction of the 
variance, while the cis-target size has no significant effect when the other two properties 
are considered. However, the relative importance of the TATA box and the trans-
mutational target size cannot be ascertained using these models as collinearity makes the 
GLM (Type I) results dependent on the input order of these two variables. Nonetheless, 
GLM results are unequivocal in showing that part of the effect due to trans-mutational 
target size is completely independent from the effect due to TATA. The results of the 
analysis of deviance are presented in supplementary Table 2 and supplementary Table 3. 
 
Finally, we investigated whether genes having specific transcription factors binding 
(TFB) sites were enriched among genes with significant expression changes across our 
mutation-accumulation lines. Genes bound by the same transcription factor are often co-
regulated and this analysis may point to functionally related or coregulated genes varying 
similarly in expression in each line presumably due to their sharing of a trans-factor that 
has been disrupted. In order to do this, we computed the number of genes with significant 
variation across mutation-accumulation lines that contain at least one binding site in its 
promoter (85 transcription factors tested; only genes with known binding sites are 
included, n = 1202). The expected value is computed as the fraction of genes in the 
genome with a given TFB multiplied by the total number of genes with evidence for 
differential expression at P < 0.99. No enrichment is evident after a bonferroni correction 
for multiple testing, thus suggesting that the effects we observed cannot be linked to an 
overwhelmingly large effect due to the disruption of any transcription factor exclusively.  
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Supplementary Table 1:  Genes sensitive to spontaneous mutations are enriched for 
TATA-containing genes. Distribution of the number of genes with significant differential 
expression among the four MA lines separated according to the presence or absence of a 
TATA box in the cis regulatory region. The genes that change in expression level among 
the four lines are significantly enriched for TATA-box containing genes (Fisher’s exact 
test, P = 2.5 × 10-16). Only genes for which there is information on the presence or 
absence of a TATA-box are included. 
 TATA-containing TATA-less Total 
Significant changes 351 881 1232 
No significant 
changes 

363 1839 2202 

Total 714 2720 3434 
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Supplementary Table 2:  
Analysis of deviance (Gaussian, link: identity) of Vm 
Model: logVm = trans-target size + TATA + cis-mutational target size 

  Deviance 
Residual 

Df 
Residual 
Deviance F P-value 

Null model  408 820.42   
Trans-mutational target size 116.62 407 703.8 73.77 < 2.2E-16 
TATA 59.39 406 644.4 37.57 2.10E-09 
Cis-mutational target size 4.15 405 640.25 2.63 0.11 
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Supplementary Table 3:  
Analysis of deviance (Gaussian, link: identity) of Vm  
Model: logVm = cis-mutational target size + TATA + trans-target size 

  Deviance 
Residual 

Df 
Residual 
Deviance F P-value 

Null model  408 820.42   
cis-mutational target size 4.03 407 816.39 2.5477 0.1112 
TATA 111.65 406 704.74 70.6245 7.41E-16 
Trans-mutational target size 64.49 405 640.25 40.7942 4.65E-10 

 



 8 

 
 
 
 
 
 
 

 
 
 
 

Supplementary Table 4. Associations between  Vm, expression noise and plasticity for 
genes with and without a TATA box. Spearman rank correlations (ρ), P-values (P), and 
sample size (N) are shown. 
 Vm x plasticity Vm x expression noise 

TATA-containing ρ = 0.55, P = 2 x 10-16 
N = 351 

ρ = 0.44, P = 3 x 10-8 
N = 146 

TATA-less ρ = 0.21, P = 7 x 10-10 
N = 881 

ρ = 0.06, P = 0.23 
N = 368 
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Supplementary Figure 1:  Distribution of the Vm of gene expression at different 
threshold of significance (Bayesian Posterior Probability, BPP).  Black: all genes, 
median: 1.5 × 10-5; Red: BPP > 0.95, median : 2.6 × 10-5; Yellow: BPP > 0.99, median : 
4.7 × 10-5;  Grey: BPP > 0.995, median: 5.7 × 10-5; Green: BPP > 0.999, median: 8.4 × 10-

5. 
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Supplementary Figure 2: Classes of genes associated with high and low Vm in gene 
expression.  Genes with significant changes in gene expression among the four lines were 
separated in two groups representing the first half (low Vm) and second half (high Vm) of 
the ranked Vms.  P-values of the 2-sample test for equality of proportions are presented. * 
indicates significance after Bonferroni correction (at α = 0.05/15). 
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Supplementary Figure 3: Mutational variance of gene expression correlates with the 
size of the trans-mutational target.  Raw data used in Fig. 2B are presented here.  
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Supplementary Figure 4: (A) Mutational variance is independent of gene mRNA 
abundance. Gene expression levels were obtained from (19) and estimated using SAGE.  
Spearman correlation, r = -0.02, P = 0.47. (B) Mutational variance is independent of 
protein abundance as measured through the fluorescence of labeled proteins (20). 
Spearman correlation, r = 0.06, P = 0.055. 
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Supplementary Figure 5: Experimental design of two-color competitive microarray 
comparisons. Arrows indicate direct comparisons of samples on an array. Every line was 
compared to every other line in a complete loop design.   
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Supplementary Figure 6: Enrichment of genes that change in expression level among 
the four lines for transcription factor binding sites (TFB). The observed values are 
computed as the number of genes containing at least one TFB in its promoter (only genes 
with known TFB are included, n = 1202) and the expected value is derived from the 
fraction of genes in the genome with a given TFB multiplied by the total number of genes 
observed.  Significant at α = 0.05:  INO2, P = 0.0315; ACE2, P = 0.0161; SUT1, P = 
0.0233;RAP1, P = 0.0089;SWI5, P = 0.0283;NDD1, P = 0.0252; FHL1, P = 0.0281; 
PHD1, P = 0.0403;SKN7, P = 0.0265; FKH2, P = 0.0081;SWI6, P = 0.0063; REB1, P = 
0.0045; No enrichment is significant after correction for multiple testing α = 0.05/85.  
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