
Case Report j

A High Productivity/Low Maintenance Approach to High-
performance Computation for Biomedicine: Four Case Studies

NICHOLAS CARRIERO, PHD, MICHAEL V. OSIER, PHD, KEI-HOI CHEUNG, PHD, PERRY L. MILLER, MD, PHD,
MARK GERSTEIN, PHD, HONGYU ZHAO, PHD, BAOLIN WU, PHD, SCOTT RIFKIN, PHD,
JOSEPH CHANG, PHD, HEPING ZHANG, PHD, KEVIN WHITE, PHD, KENNETH WILLIAMS, PHD,
MARTIN SCHULTZ, PHD

A b s t r a c t The rapid advances in high-throughput biotechnologies such as DNA microarrays and mass
spectrometry have generated vast amounts of data ranging from gene expression to proteomics data. The large size and
complexity involved in analyzing such data demand a significant amount of computing power. High-performance
computation (HPC) is an attractive and increasingly affordable approach to help meet this challenge. There is
a spectrum of techniques that can be used to achieve computational speedup with varying degrees of impact in terms of
how drastic a change is required to allow the software to run on an HPC platform. This paper describes a high-
productivity/low-maintenance (HP/LM) approach to HPC that is based on establishing a collaborative relationship
between the bioinformaticist and HPC expert that respects the former’s codes and minimizes the latter’s efforts. The
goal of this approach is to make it easy for bioinformatics researchers to continue to make iterative refinements to their
programs, while still being able to take advantage of HPC. The paper describes our experience applying these HP/LM
techniques in four bioinformatics case studies: (1) genome-wide sequence comparison using Blast, (2) identification of
biomarkers based on statistical analysis of large mass spectrometry data sets, (3) complex genetic analysis involving
ordinal phenotypes, (4) large-scale assessment of the effect of possible errors in analyzing microarray data. The case
studies illustrate how the HP/LM approach can be applied to a range of representative bioinformatics applications and
how the approach can lead to significant speedup of computationally intensive bioinformatics applications, while
making only modest modifications to the programs themselves.

j J Am Med Inform Assoc. 2005;12:90–98. DOI 10.1197/jamia.M1571.

This paper describes four case studies that apply high-perfor-
mance computation (HPC) to different problems involving
bioinformatics. In particular, the paper describes a high-
productivity/low-maintenance (HP/LM) approach to bring-
ing the potential power of HPC to bioinformatics. The goal of
this approach is to allow bioinformatics researchers to reap the

benefits ofHPCwithout having tomakemajor sacrifices in the
ability to pursue their research, which frequently involves
a process of iterative algorithmic exploration and refinement
over time. HP reflects an emphasis on minimizing the initial
HPC deployment effort, whereas LM stresses the importance
of reducing the ongoing work needed to continue to realize
the benefits of HPC during the process of iterative refinement.

As discussed later in the paper, a variety of techniques can be
used to achieve HPC. One major technique involves parallel
computation in which different parts of a computationally in-
tensive program run simultaneously on multiple computer
processors. Parallel computation can be performed on spe-
cial-purpose parallel machines or on clusters of conventional
workstations or computers connected via a computer net-
work.

Researchers have used parallel computation extensively to
enhance the performance of many computationally intensive
applications in biomedicine. One potential risk in porting
a program to run on a parallel machine is that the resulting
parallel program may be very different from the original pro-
gram developed by the biology/bioinformatics research
team. In the extreme case,

1. The original programmay be completely rewritten in a dif-
ferent programming language for efficiency purposes. For
example, it might be translated from the interpretive Perl
language to the compiled C language.

Affiliations of the authors: Department of Computer Science (NC,
MS), Center for Medical Informatics (MVO, K-HC, PLM), De-
partment of Genetics (HZhao, KWh); Department of Molecular
Biophysics and Biochemistry (MG, KWi); Department of Molecular,
Cellular, and Developmental Biology (PLM); Department of Statistics
(JC); Department of Epidemiology and Public Health (HZhao, BW,
HZhan); Department of Ecology and Evolutionary Biology (SR); and
W. M. Keck Biotechnology Resource Laboratory (KWi), Yale
University, New Haven, CT.

Supported in part by National Institutes of Health (NIH) grant K25
HG02378 from the National Human Genome Research Institute; NIH
grants T15 LM07056 and P20 LM07253 from the National Library of
Medicine; NIH contract N01-NV-28186 from the National Heart,
Lung, and Blood Institute; NIH grant U24 DK58776 from the
National Institute of Diabetes and Digestive and Kidney Diseases;
and by National Science Foundation (NSF) grant DBI-0135442.

Correspondence and reprints: Nicholas Carriero, Department of
Computer Science, Yale University, New Haven, CT 06520-8285;
e-mail: <carriero-nicholas@yale.edu>.

Received for publication: 03/09/04; accepted for publication:
08/05/04.

90 CARRIERO ET AL., Facilitating HPC in Biomedicine

2. The program code may be restructured in fundamental
ways to make it more efficient, for example, to take advan-
tage of specialized algorithmic programming techniques
more familiar to computer scientists than to biological ap-
plication developers.

3. Parallel programming constructs may be tightly integrated
into the code at various levels to take maximum advantage
of the potential for parallel execution.

The above would not be examples of an HP/LM approach to
HPC. Once all these changes, refinements, and transforma-
tions have been made to the original code, it would be diffi-
cult for the biology/bioinformatics team to work with that
code in a very flexible, incremental fashion. It would now
be much more difficult to refine their approach and their
ideas iteratively and to try many different variants of a solu-
tion. They would have to make such incremental changes to
the new, parallelized version of the code. Alternatively, if
they continued to develop and refine their original program,
any changes would need to be replicated in the parallel ver-
sion to obtain the advantages of HPC. Both of these solutions
are potentially awkward and inhibiting.

As a result, this HM approach to HPC risks ‘‘freezing the pro-
gram in concrete’’ in a way that, in practice, may make it very
difficult for the code to evolve. In addition, the level of effort
required effectively prohibits broad deployment of this ap-
proach. Nevertheless, this approach to HPC may be highly
desirable for extremely computationally intensive applica-
tions, particularly if the underlying program has become ma-
ture and iterative refinement is not a major goal.

We believe, however, that there is a major potential benefit to
developing and refining an alternative HP/LM approach that
will help enfranchise many more bioinformatics researchers
and applications and help them harness the potential power
of HPC. Underlying this HP/LM approach are several funda-
mental principles.

1. A major principle of the HP/LM approach is to make as
few changes to the original code as possible. In fact, if it
is easy to structure parallel computation around the origi-
nal code without changing it at all, and still reap the bene-
fits of HPC, that would be most desirable.

2. The goal of the HP/LM approach is not to reap the maxi-
mum efficiency benefits in making changes to a program.
Rather, the goal is to remove compute time as a rate-limiting
step in biology/bioinformatics research. Thus, if a computation
takes a month to run and can be reduced to ten hours, that
may be sufficient if the rate-limiting step now becomes per-
forming the laboratory research and/or analyzing and or-
ganizing the data. It may not be necessary, for example, to
invest more time and energy to reduce the computation
toonehour.Asa result, onemightdecide to leave aprogram
as a whole in an interpretive language and only optimize
particular highly computationally intensive modules.

3. HPC is not a synonym for parallel computation. For some
programs, parallel computation may not even be required
to achieve HPC. As described below, an important first
step in approaching a new program presented for porting
to HPC is to inspect the code and see whether simple, local
programming changes might greatly speed up the pro-
gram. Typically, this is the case. Indeed, it may be that rel-
atively simple, local changes are all that are needed to

remove the computation time of that program from being
a rate-limited step in the research project as a whole. In that
case, parallelization may be completely unnecessary.

Taken together, these principles can foster a collaborative ef-
fort well within the comfort zones of both the bioinformaticist
and the HPC expert. This paper describes four case studies
that illustrate these principles at work.

Goal of this Paper
The goal of this paper is to help facilitate the widespread use
of HPC by bioinformatics researchers. Bioinformatics is in-
creasingly tackling compute-intensive problems that require
HPC, and HPC is increasingly affordable. We believe that
the HP/LM approach represents a philosophy and an ap-
proach to the use of HPC that has the potential to make
HPC much more accessible to bioinformaticists in the context
of iterative algorithmic research. This approach, of course,
complements fundamental research to develop new algo-
rithms to perform the underlying computations much more
efficiently. To help make the HP/LM approachmore concrete,
the paper describes our experience applying these principles
in four representative case studies, with specific examples of
how HPC techniques were used for each. In addition, we dis-
cuss various ancillary issues that arose and that were impor-
tant to achieving success but are not typically considered to
be part of HPC per se. The broader goal of this work is to ex-
plore ways to make it easier to bring HPC to bioinformatics
and thereby to make it possible to use HPC inmanymore bio-
informatics applications than might otherwise be the case.

Background
The field of parallel computation has been a robust area for
research and development within the field of computer sci-
ence for many years. Much of the early work in this area in-
volved the use of special-purpose parallel machines and
continues to the present day. Examples include the iPSC/2,1

CM-5,2 ASCI Red,3 and Blue Gene.4 A great deal of recent
work involves parallel computing on networks or clusters
of ‘‘off-the-shelf’’ desktop computers and servers. Good par-
allel programming tools are essential. Examples include mes-
sage-passing systems PVM (parallel virtual machine)5 and
MPI (message passing interface)6 and virtual shared memory
coordination languages such as Linda.7 There has been awide
range of computationally intensive computations within bio-
medicine in which these technologies have been successfully
applied, including linkage analysis,8 sequence comparison
using Blast,9 and FASTA search.10

A recent trend within the biological sciences has been the de-
velopment of a range of high-throughput technologies that
are starting to produce massive quantities of data on a scale
that far exceeds previous data produced by biological re-
search. These technologies, for example, include the use of
microarray technology to analyze gene expression11,12 and
the use of mass spectrometer–based techniques to analyze
protein expression.13,14

As a result of technologies such as these, a rapidly growing
number of biomedical researchers need to analyze data in
quantities that are larger by several orders of magnitude
than they have analyzed previously. Many of these research-
ers therefore have to confront problems that involve very
computationally intensive analyses. In addition, many of

91Journal of the American Medical Informatics Association Volume 12 Number 1 Jan / Feb 2005

the algorithms and approaches to analyze these massive
amounts of data are still in the very early stages of develop-
ment. Bioinformatics researchers are exploring many differ-
ent approaches and need to be able to do so in a very
flexible, incremental, evolutionary process.

Thus, there is a need for a new type of collaboration between
computer scientists and biomedical researchers, one that will
bring HPC to bear on the many evolving challenges in a way
that accommodates the fluid nature of the underlying bioin-
formatics research. This is the context in which we are explor-
ing the HP/LM approach to biomedical HPC described in
this study.

A number of techniques are used to improve the performance
of the codes discussed in these case studies.15,16 We make no
claim of novelty with respect to these techniques per se. For
example, one class of techniques has its roots in compiler op-
timization: strength reduction, common subexpression elimi-
nation, code hoisting, loop reordering, etc.17 Many times,
compilers (or interpreters) lack the information necessary to
apply these optimizations automatically safely, but it is
straightforward for a human to do so manually. For the
most part, these techniques (andmany others) arewell known
to experienced programmers. Of equal importance, experi-
enced programmers know when it is appropriate to use these
techniques and how to apply these techniques in an unobtru-
sive way. The question of concern here is how to bridge this
expertise gap so that this knowledge will be brought to bear
in the service of bioinformaticists and their codes, with a min-
imum of disruption to the base code and while minimizing
the efforts of the experts (bioinformaticists, biologists, and
computer scientists).

Four Case Studies
Using the Blast Sequence Comparison Program on
a Massive Scale
The first case study involves a project that requires perform-
ing biological sequence comparisons on a massive scale, us-
ing the widely used Blast sequence comparison program.18

An example of this type of computation might be to compare
a database of 300,000 known protein sequences with an entire
genome, which might contain hundreds of millions of nucle-
otide base pairs, or more. Another example might involve
comparing multiple genomes with one another. Large Blast
runs, on the order of 107–108 symbols (nucleotides or amino
acids) against aggregate data sets in the range of 108–109 sym-
bols are playing an increasingly important role in some geno-
mic and proteomic analyses.

An example problem being explored at Yale involved a 500
million amino acid aggregate data set (from seven source
data sets) compared with itself. We initially investigated three
HPC strategies for delivering enough compute power to carry
out these computations in a reasonable amount of time. In
keeping with our rate-limiting step goal, our aim was to re-
duce turnaround time from the better part of a year (definitely
rate limiting) to one or two weeks (considerably less than the
time needed to propose such a problem, gather data sets,
draw conclusions, and author a paper19).

1. The first strategy involved using a special-purpose, com-
mercially available parallel package for performing Blast
searches.

2. The second strategy involvedexploring theuseof aparallel-
ized version of the Blast code, in which parts of an individ-
ual sequence comparison could be performed in parallel.

3. The third strategy, which we ultimately adopted, was to
use the standard (sequential) Blast package and to achieve
a simple level of parallelization using Python scripts. We
settled on this strategy because it was by far the simplest,
yet was effective for the project at hand. It also required no
changes to the Blast program and was therefore firmly in
accordance with our HP/LM philosophy.

The Blast runs of interest were easy to decompose into man-
ageable computations that could be run independently on
separate processors, the available resources are essentially
dedicated, and data could be made available via a network
file server. As a result, it was straightforward to implement
the scripting approach, which required creating scripts to
do the following:

1. Split the target file into chunks, each of which defined sep-
arate sequence comparison tasks.

2. Detect idle cluster nodes.
3. Launch new Blast jobs to idle nodes, working through the

collection of tasks. A special ‘‘driving script’’ was written
to look repeatedly for free nodes upon which to launch
new tasks automatically.

4. When all the tasks have been processed, concatenate the
output from individual runs to form the final output.

These scripts were all easily realized in Python. None was
more than a page. A total of only 125 lines of code was re-
quired in all. Using these scripts, we performed several
runs, which formerly would have taken several months
each, in ten days to twoweeks each. The runs were performed
using a 12-node parallel computer cluster, in which each node
was a dual-processor machine with 2.4 GHz per processor
and 2 GB of main memory per node. In summary, for this
problem, the HP/LM scripting approach was simple, in-
volved no alteration to the basic Blast system, was robust,
and accomplished the goals with reasonable efficiency and
modest deployment effort.

Taking this scripting approach and leaving the Blast program
unchanged did raise a number of ancillary problems that
needed to be solved. These problems would not normally
be considered to be issues involving HPC per se, but they
do serve to illustrate some of the pragmatic problems that
arise when adapting an application for HPC. For this Blast ap-
plication, the following issues arose:

1. The need for automatic data cleaning. One major problem that
arose concerned the format of the input data. To run suc-
cessfully with Blast, the data needed to be in a specific for-
mat (the FASTA format). If some of the data were not
strictly in this format, the Blast comparison would fail.
Sometimes it would fail in a readily detectable way.
Sometimes it would fail in a way that was not easy to de-
tect short of comparing the results with a sequential Blast
run on the same data. As a result, a data screening script
needed to be written that would ensure that the data
were formatted correctly before the Blast system was run.

2. Blast error detection. Sometimes the Blast program failed
for other reasons, for example, due to incompatibilities

92 CARRIERO ET AL., Facilitating HPC in Biomedicine

between how Blast and Linux use memory. Such errors
could result in the Blast program stopping without com-
pleting its analysis, but with no indication that an error
had occurred. To detect such situations, the scripts needed
to inspect the output file to ensure that the full analysis had
been performed. This could be performed automatically.
We also reduced the Blast task size so that such errors
were less likely to occur. Note that this problem could, of
course, occur with just a single Blast run, but, in that case,
it would naturally be easier to notice. When the Blast runs
were performed on a massive scale, an automated tool to
detect when the problem has occurred was needed.

Thus, this case illustrates that a large computation could be
approached using HPC in a quite straightforward fashion,
with no change to the bioinformatics program being used.
This general approach clearly has potential use in many ap-
plications beyond Blast. Some specialized error checking
was required to handle situations that were presumably
caught by manual inspection when Blast runs are performed
on a much less massive scale.

Analysis of Large Mass Spectrometry Data Sets
The second case study involves a biostatistics project that is
exploring approaches to cancer classification using mass
spectrometry (MS) data sets, attempting to identify bio-
markers in serum to distinguish between cancer and normal
samples.20,21 In this application, the MS data sets each involve
a matrix in which the rowswere mass/charge ratios observed
byMS and the columns correspond to anonymized patient se-
rum samples. Each cell in the matrix contains the observed in-
tensity for the corresponding mass/charge ratio and sample.
A second vector indicates each sample’s cancer status.

The project used the RandomForest (RF) algorithm developed
by Breiman22 for classification analysis. Previous work has
shown good performance using this algorithm.23 Briefly, the
RF algorithm uses bootstrapping from the original data to
create multiple pseudo data sets. These are then used to try
to identify a modest subset of the features that best split the
data set into normal versus disease categories. This is done
by randomly selecting a different subset of features for each
pseudo data set and seeing how well that subset of features
works. RF combines two useful ideas in machine-learning
techniques: bagging and random feature selection. Bagging
stands for bootstrap aggregating, which uses resampling to
produce pseudo replicates to improve predictive accuracy.
By using random feature selections, predictive accuracy can
be significantly improved. As the resampling step can be eas-
ily parallelized, this algorithm provides an excellent example
that demonstrates the power of parallel computing in proteo-
mics research.

This RF codepassed through two iterations ofHPC refinement
and at the same time evolved significantly in response to de-
velopments in the code owners’ research program. The first
phase involvedmodest local optimization of the code by elim-
ination of common subexpressions fromnested loops, in a sim-
ilar fashion as discussed in the next case. The changes in the
second phase focused on four issues: data structures, numeric
stability, parallelization, and random number generation.

The main data structure of the code stores a matrix of input
data sorted by rows. As the algorithm unfolds, the matrix is
partitioned into subsets of columns and the data within the

subsets are shuffled to preserve sorted order in the rows.
The intent here was to avoid the cost of a full sort for each
row fragment with each iteration of the code. A careful re-
view, however, revealed that significantly more time was
spent in carefully maintaining the sort order of the whole
data set than would be required to sort on the fly those por-
tions of the data set actually used. The code was correspond-
ingly restructured using a standard Unix library sort routine,
and in the process the program was simplified.

The code also exhibited some problems when we attempted
to use compiler optimizations in that the output differed.
This problem was ultimately traced to conditional constructs
using direct floating point numeric comparisons. These were
replaced by comparisons that ignored differences within
a small epsilon, which allowed the program in turn to accom-
modate floating-point round-off error. Once these changes
were made, compiler optimizations could be enabled without
altering the output.

These changes (along with improvements in the first phase)
led to an approximately 18-fold reduction in execution time.
This is a rough estimate because, as indicated above, the
base code was evolving for other reasons, making it difficult
to compare directly with the initial version.

Finally, the generation of each RF tree is, in principle, an inde-
pendent computation, which allowed a straightforward im-
plementation of parallelization, namely, to farm out that
generation of trees to a collection of worker processes. To re-
alize this strategy with minimal impact on the code, we made
use of a parallelization ‘‘idiom’’ (described in detail with ex-
amples24) that is based on creating multiple processes that
are essentially replicas of the initial process, all executing in
loose synchrony until they reach an inner loop where they co-
operatively work to define and execute a partition of the work
that is to be done in the body of the loop. In abstract terms,
a sequential program with the following general structure:

setupðÞ
loop

�

loopWorkðÞ
g
cleanupðÞ

becomes a parallel program with the following logic at each
of multiple simultaneous processors:

setupðÞ
loop

�

if ownThisWorkðÞ logResult
�
loopWorkðÞÞ

g
mergeResultsðÞ
cleanupðÞ

ownThisWork() is a bit of coordination code (written in a var-
iant of Linda7,25) that affects the disjoint partitioning. When
multiple instances of the above are executing concurrently,
ownThisWork() ensures that one and only one instance eval-
uates a given iteration of the loop. The net result is that the
base code need only be modified in a few places with a few
lines of code and a coordination module linked to the final
executable to realize a parallel version. We also developed

93Journal of the American Medical Informatics Association Volume 12 Number 1 Jan / Feb 2005

a sequential version of the coordination module so that the
same source code could be run as a ‘‘traditional’’ sequential
executable in an environment lacking multiple processors.

The only other change involved restructuring the code’s inter-
action with a random number generator to ensure identical
output from sequential and parallel runs. One hundred
eighty lines of code (approximately 20 lines in the base
code, the rest in the coordination modules) were required to
accomplish all aspects of this parallelization, half of which
is easily recyclable ‘‘boilerplate.’’ The parallel version ran
about 11 times faster on 20 processors, for a net reduction in
run time of a factor of about 200 from the initial run time.

Genetic Analysis
The next case study involves a program that implements ge-
netic analysis of ordinal phenotypes. Numerous human dis-
eases and health conditions are recorded in ordinal scales
including various stages of cancer and severity of psychiatric
disorders. Genes and gene-environment interactions underlie
many of these conditions. Statistical models and software are
well established when the disease is diagnosed as ‘‘yes’’ or
‘‘no’’ or reflected by a continuous measure such as the rela-
tionship between hypertension and blood pressure. How-
ever, little attention has been paid to the genetic analysis of
ordinal phenotypes. Zhang et al.26 outline a latent variable
model to assess whether an ordinal trait aggregates within
a family and whether it has a major gene effect. Due to the
complex nature of family structure and the complexity of
the latent variable, the evaluation of the likelihood function
involves a hierarchical summation and is computationally in-
tensive. In addition, to evaluate the validity of the propor-
tional odds model, a series of simulation studies can be
performed for which increased computational performance
would also be very helpful.

A first step in considering how best to port a program to HPC
involves profiling the program to see where it spends most of
its compute time. If highly computationally intensive por-
tions of code are identified (e.g., inside nested loops), one
then examines those sections of the program for potential op-
timizations. In this case, we identified three classes of changes
to the base code to improve performance.

1. Profiling indicated the code spent a significant amount of
time computing integer powers of 3 using the pow() func-
tion. That function is really meant for computing real
powers of real numbers and is therefore much more in-
volved than what was actually needed. In fact, the needs
of this program could be served using lookupwithin a sim-
ple table of the powers of 3. Thus, a computationally inten-
sive function invocation like pow(3, i) could be replaced
with a simple table lookup, e.g., pow3tab[i]. (Note: The
next change makes this change less important, as it signif-
icantly reduces the need for powers of 3 in the first place.)

2. Looking into why powers of 3 were needed, however, it
became clear that the main use was to convert an index
variable into its base 3 digits. Rather than recompute the
expansion every iteration of a nested loop, it is much
more efficient just to add 1 to the previous base 3 expan-
sion, using the rules of base 3 arithmetic. In the original
program, the following code converts j, the outer loop in-
dex variable, to its base 3 representation (stored in the ar-
ray indexk):

for
�
k ¼ 0; k,MaxDigit; k11Þ f

rr ¼ j=pow
�
3; ðMaxDigit-1-kÞÞ;

j ¼ j - rr � pow
�
3; ðMaxDigit-1-kÞÞ;

indexk½k� ¼ rr;
g

This code was replaced with code that added 1 to the base 3
representation in indexk each iteration, thus avoiding the cal-
culation of pow() entirely:

if
�
j
��

digit ¼ MaxDigit-1;
while

�
2 ¼¼ indexk

�
digit

�� �

indexk
�
digit

�
¼ 0;

-- --digit;
g
indexk

�
digit

�
1¼ 1;

g

3. The third modification involved introducing a temporary
variable to hold the value of an expression that is expen-
sive to compute, and moving that computation out of
a nested loop, which is possible because the value of the
expression does not change during the iterations of the
loop. This is a simple technique that can be used to speed
up many programs. In this way, the following code

for
�
l ¼ 1; l , ¼ p14; l11Þ

�

for
�
k ¼ 1; k , ¼ p14; k11Þ

I22
�
l
��
k
�
1¼ li

�
l� � li

�
k� � ðtheta1 � exp

�
Pi1Þ

1ð1-theta1Þ � exp
�
Pi2ÞÞ;

I12
�
l� 1¼ li

�
0� � li

�
l� � ðtheta1 � exp

�
Pi1Þ

1 ð1-theta1Þ � exp
�
Pi2ÞÞ;

I120½l� ¼ I12½l�;
g

became

cse ¼ ðtheta1 � exp
�
Pi1Þ 1 ð1� theta1Þ � exp

�
Pi2ÞÞ;

for
�
l ¼ 1; l , ¼ p14; l11Þ f

for
�
k ¼ 1; k , ¼ p14; k11Þ

I22½l�½k�1¼ li½l� � li½k� � cse;
I12½l� 1¼ li½0� � li½l� � cse;
I120½l� ¼ I12½l�;

g

These three changes, which involved changing only a few
lines of code, resulted in an approximately fivefold reduction
in run time. It is worth emphasizing, however, the following:

1. The original program should not be construed as some-
how ‘‘wrong.’’ It reflects a natural expression of the com-
putation to be done.

2. The expertise to realize the performance implications of
these changes is broadly available in one community but
not in another.

3. As a result, this is an excellent example of the HP/LMprin-
ciple in action.

94 CARRIERO ET AL., Facilitating HPC in Biomedicine

Building on this improved sequential base, we developed
a parallel variant of the code. This effort was quite similar
to that described in the previous section. The ‘‘ownership’’
technique described above was used, entailing only a few
changes to the base code. One hundred fifty lines of code
were required to accomplish this parallelization, roughly
half of which were ‘‘boilerplate’’ from the previous case.

Both parallel and sequential coordination modules were writ-
ten that allowed the creation of executables for either environ-
ment. A speedup of approximately eightfold was achieved
with 24 compute nodes. A limiting factor in parallel perfor-
mance was Amdahl’s law: 190 seconds of a 3,500-second se-
quential test run (using the optimized sequential code) was
spent in code that was not parallelized. As a result, the best
time for a perfectly efficient parallel run would be 320 sec-
onds (190 1 (3,500 2 190)/24). Our parallel test ran in 450
seconds. Overall, the speedup relative to the original code
was approximately 30- to 40-fold for our test cases.

Microarray Analysis
The fourth case study involves a program designed to help
assess the effect of possible error in analyzing microarray
data. Ever since microarrays were invented as a tool to mea-
sure the transcriptional state of a genome, their uses have ex-
panded, but all applications share some common statistical
and computational problems. The many thousands of mea-
surements on any single microarray and the millions of mea-
surements comprising a complex multiarray experiment
share sources of noise as well as actual biological signal.
Exactly how to translate the raw data, approximately 20 pix-
els worth of fluorescence intensities for each spot, into abun-
dances of mRNA molecules, for instance, is still unknown.
Various methods have been proposed to estimate and remove
noise,27,28 but gauging how well these work still awaits better
physical models of the experimental process.

To analyze the results of microarray experiments designed to
investigate gene expression in the fruit fly,29 a code was devel-
oped ‘‘in house’’ that incorporates a general linear model,
specifying sources of signal and noise and estimating their
contributions to the overall measurements.30 Although an R
programwas available to do this analysis,31 it lacks the ability
to cope with heteroscedastic data. The initial code calculates
the relevant averages over various combinations of the ex-
pression data and from these computes an analysis of vari-
ance. Bootstrapping techniques were used to develop
confidence intervals.

The analysis code was written in Python, a language well
suited to rapid experimentation and development of algo-
rithms. Python is object oriented and interpreted, making it
a rich, but sometimes sluggish, environment in which to
work. We augmented the code with a timer facility to obtain
profiling data. These data guided a series of changes that fell
into two groups: (1) a shift from in-line code to the use of op-
timized Python extensions for numeric operations and (2)
a move to more efficient Python file operations.

The use of optimized extensions (or more generally to the use
of standard efficiently coded libraries) is a particularly impor-
tant part of the HP/LM HPC approach. Code reuse, of which
this is an instance, is a desirable goal of computer software
systems, but, in practice, there are often impediments for
the nonspecialist user. Different vocabularies, data structures,

and usage profiles combine to make the integration of good
packages a difficult proposition. Easing these integration is-
sues is a topic worthy of systems research. We illustrate
here some of these issues in the narrow context of the code
at hand. Consider the following code fragment:

for f in range
�
len

�
effects

�
e�ÞÞ :

if len
�
effects

�
e�:shape

�
>1:#if it is a double effect array

for g in range
�
len

�
effects

�
e
��
f
�
ÞÞ :

if counter
�
e
��
f
��
g�!¼ 0 :

effects
�
e
��
f
��
g
�
¼ effects

�
e
��
f
��
g�=counter

�
e
��
f
��
g
�

else :

effects
�
e
��
f
��
g
�
¼ 10000

else :

if counter
�
e
��
f�!¼ 0 :

effects
�
e
��
f
�
¼ effects

�
e
��
f�=counter

�
e
��
f
�

else :

effects
�
e
��
f
�
¼ 10000

This code computes the means of various subsets of the ex-
pression data. Using the numeric extensions to Python, this
code becomes

effects
�
e� ¼where

�
equal

�
counter

�
e�;0Þ;10000;effects

�
e
��

effects
�
e�=¼where

�
equal

�
counter

�
e�;0Þ;1;counter

�
e
��

In other words, a collection of nested loops affecting element-
by-element computations are replaced by matrix-level opera-
tions under the control of ‘‘mask’’ matrices, executed by
a compiled library function. This transformation is relatively
straightforward for someone with a background in software
systems for linear algebra, but not at all obvious to the biolo-
gist developing the analysis code.

The second major modification involved including low-level
‘‘pickling’’ operations for I/O of Python objects. The program
was storing a number of intermediate results on disk and re-
reading them later in the analysis. Pickling is a term for stor-
ing such results in the format of Python’s internal object
structures, which in turn facilitates the later reading of that
data back into Python.

These two changes (the shift to numeric Python and to low-
level pickling operations) resulted in an eightfold reduction
in run time. After a careful review, the code’s developer
also restructured and simplified the statistical processing, re-
ducing run time even more, effectively obviating further HPC
refinement at least for the present. This case illustrates that
once one starts to optimize code with an eye to HPC, one
may achieve acceptable performance even without the need
for parallel computation.

Current Status and Future Directions
Our work on developing, refining, and applying an HP/LM
approach to biomedical HPC is still a work in progress. As of
July 2004,

1. The parallelization of Blast (case 1) is now fully operational
and being used for various projects.

2. A version of the parallelized microarray analysis program
(case 4) is heavily used, and a new cluster has recently been
installed to increase the available processing power.

95Journal of the American Medical Informatics Association Volume 12 Number 1 Jan / Feb 2005

3. The other two projects (cases 2 and 3) are still in the process
of iterative algorithmic research. The modest HPC-related
algorithmic changes are now part of code. The knowledge
that further performance gains can be achieved using par-
allel computation provides the respective research groups
with the opportunity of contemplating larger problems in
the near future.

Looking to the future, we are continuing to work with bio-
medical researchers to extend the use of the HP/LM HPC ap-
proach. In addition, we are particularly interested in
exploring a number of more fundamental research issues
that relate to the approach. These research issues include (1)
developing approaches to facilitate code reuse, including
dealing with issues of interfaces, data transformations, and
nomenclature and (2) performance enhancement of rapid ap-
plication development environments, for example, the devel-
opment of optimization techniques and the addition of
coordination facilities to facilitate parallel and distributed ex-
ecution.

Discussion and Lessons Learned
This section discusses a number of the issues that arose in the
course of applying the HP/LM approach to HPC in the four
case studies described above.

Summary of HP/LM HPC Techniques
In this paper, we have attempted to illustrate a range of HP/
LM techniques that can be taken to achieve HPC while still
allowing the original program code and the associated bioin-
formatics project the flexibility to continue to perform algo-
rithmic exploration in a flexible fashion. These techniques
include the following.

1. One very simple but powerful approach involves making
modest local modifications to the program code that very
selectively introduce efficiency, after first profiling that
code to identify areas of the code that are highly computa-
tionally intensive. Commonly useful techniques in this re-
gard are the extraction of common subexpressions from
inside nested loops so that they are only computed once
and strength reduction to simplify computations that do
need to be done every iteration. There are many other tech-
niques that an HPC expert can bring to bear once an appro-
priate collaborative relationship has been established.

2. Another useful technique is to use optimized, compiled li-
braries to accomplish well-defined operations rather than
include the code to perform these tasks in the user’s
code. This approach is particularly useful in allowing the
user to continue to work within an interpretive rapid ap-
plication development (RAD) environment, such as R or
Python, while still achieving significant performance en-
hancements. Examples might include matrix operations,
sorting, and specialized algorithms such as singular value
decomposition. An important component of our collabora-
tive approach involves helping the bioinformaticist to real-
ize that the particular problem he or she is confronting
could profitably use an existing special-purpose library
of this sort.

3. Parallel computation is, of course, a centrally important
technique for achieving HPC. Taking the HP/LM ap-
proach, however, it is often possible to take a user’s code

and parallelize it in a way that (a) does not involve making
many changes to that code, (b) allows the structure of the
code to remain unchanged, and (c) allows the code to be
refined and tested in a sequential (single processor)
mode but run operationally in parallel.

4. Finally, the porting of a program to parallel operation can
require confronting a number of somewhat idiosyncratic,
and perhaps unexpected, issues. Examples discussed
above include (a) the need for specialized error checking
(in the case of Blast), (b) the need to coordinate the use
of random number generators so that the parallel program
will produce the identical output as the sequential version
of a program, and (c) in some circumstances, restructuring
and rationalizing the program code to make it easier to
work in either the sequential or parallel mode.

As mentioned previously, we used the parallel programming
environment, Linda, in cases 2 and 3. Although the use of
Linda is in no way critical to the HP/LM approach, the use
of a coordination facility that supports asynchronous access
to a shared variable greatly simplifies the realization of a dy-
namic, adaptive partitioning of the work in these two cases.
This style of coordination can in principle be achieved using
other approaches to parallel programming such as message
passing systems like PVM5 or MPI,6 but not nearly as easily.
Gropp et al.,6 for example, present anMPI example of a shared
counter that runs to three pages of code. Carriero and
Gelernter24 discuss this topic in more detail.

Treating the Bioinformatics Program Code as an
Executable Specification
When working with actual code, arguably the most impor-
tant lesson is that, in this HPC process, one should approach
the code as an executable specification. In other words, the
code is often the most precise statement available in any
form of the analyses/computations of interest. It is a snapshot
that captures one moment in a research group’s ongoing ef-
fort to tackle a difficult problem. As that research group’s un-
derstanding evolves, the new understanding is embodied in
changes to the code. We want to impose few, if any, con-
straints on this essentially creative process.

The main implication of this is that code changes made with
an eye to performance improvement are nonetheless changes
to this specification and so should be made in a manner that
has minimal impact on that specification. Generally, this is
easier to accomplish with small rather than large changes,
but even the latter are possible. Indeed, when the latter are
appropriate, they can have the beneficial effect of significantly
simplifying the specification. For example, replacing in-line
linear algebra operations with calls to library routines makes
it clearer what the code is actually doing and will often run
significantly faster.

How Well Will a ‘‘Minimalist’’ Approach Work?
In the broad context of computer science research, the HP/
LM HPC approach does not involve high-tech innovation in
the extreme ‘‘big iron’’ sense, although there is certainly
a wealth of interesting and challenging research questions
in adapting the approach to the many needs of biomedicine.
In a sense, the HP/LM approach is an attempt to apply the
90-10 rule—that a substantially large portion (approximately
90%) of a potential gain can often be realized with a relatively
small portion (approximately 10%) of the effort needed to

96 CARRIERO ET AL., Facilitating HPC in Biomedicine

achieve that whole gain. This paper describes four case stud-
ies that illustrate this philosophy and attempts to distill some
basic lessons from this experience. The most important result
is the positive finding that in all cases, the 90-10 rule held and
respectable performance gains were possible with modest ef-
fort and little impact on the base software systems.

One of the projects involved a base system (Blast) that was
treated as atomic. For Blast, no internal changes were made,
rather itwas augmentedwith external components to improve
performance. Three projects involved base codes that were
modified inmodestways.Although it is hard to quantify effort
in detailed terms,we cangive a general sense bynoting that for
the primary computer science researcher who performed this
work, approximately one half staff-year was invested directly
in the four projects described. Further, for none of the bioinfor-
maticists did theHPC process become an end in itself, rather it
complemented ongoingdevelopment efforts of the base ‘‘spec-
ification.’’ Significant reductions in run time were achieved
across the board as a result of this modest investment of effort.
In addition, the process often led to a sounder code base.

An HP/LM Model for Biomedical HPC
Collaboration
Implicit in the HP/LM approach to HPC described in this pa-
per is a corresponding HP/LMmodel of biomedical HPC col-
laborations. As the complexity of bioinformatics analyses
increases and the need for HPC is increasingly encountered,
the question arises as to how best to structure collaborations
that address these problems. For example, (1) bioinformat-
icists might become steeped in the lore of HPC, (2) computer
scientists might invest the time and energy to become knowl-
edgeable bioinformaticists, and (3) large, highly compu-
tational projects might serve as strong bonds to unite
bioinformatics and computer scientists in joint collaborative
projects.

The first two solutions are potentially limited given the fact
that few individuals are likely to be able tomaster a significant
fraction of both fields. The third approach seems logical, but it
is often realized as a tight collaboration of bioinformaticists
and computer scientists over an extended period of time,
a model that is so resource intensive that wide deployment
is inhibited. The third approach, however, does suggest an
HP/LMmodel of collaboration based onmore loosely bound,
less resource-intensive interactions. In summary, (1) accept
that the goal is a performance level that shifts the rate-limiting
step elsewhere, not the achievement of some provably optimal
run time; (2) respect the base code/system; (3) focus on the
minimal set of changes needed to realize the performance goal.

This general approach will in turn (1) reduce cost and time of
developing high-performance bioinformatics application so-
lutions, (2) tend to insulate research and operational applica-
tion software from system specifics, and (3) reduce the cost of
maintaining and enhancing applications for both the code de-
velopers and HPC specialists.

These principles will steer the collaboration in a direction that
could require relatively little intervention on the part of the
computer scientists and relatively little adjustment on the
part of the bioinformaticists. In this way, the performance
goal can be met and expertise exchanged without the need
for creating an extensive framework for collaboration. If this
approach is tenable, then the door is opened to much broader

deployment of HPC in bioinformatics in that smaller projects
can be considered that would not otherwise have justified
a more substantial effort.

References j

1. Arlauskas R. iPSC/2 system: a second generation hypercube. In:
Proceedings of the Third Conference on Hypercube Concurrent
Computers and Applications: Architecture, Software, Computer
Systems, and General Issues. New York: ACM Press, 1988:32–42.

2. Johnsson SL. The connection machine systems CM-5. Proceed-
ings of the Fifth Annual ACM Symposium on Parallel Algo-
rithms and Architectures. New York: ACM Press, 1993:365–6.

3. ASCI Red, 1998. Available at: http://www.sandia.gov/
ASCI/Red/. Accessed Oct 2004.

4. Blue Gene, 2002. Available at: http://www.research.ibm.com/
bluegene/. Accessed Oct 2004.

5. Geist A, Beguelin A, Dongarra J, Jiang W, Manchek M, Sun-
deram S. PVM: Parallel Virtual Machine: A Users’ Guide and Tu-
torial for Network Parallel Computing. Cambridge, MA: MIT
Press, 1984.

6. Gropp W, Lusk E, Skjellum A. Using MPI-2nd Edition: Portable
Parallel Programming with the Message Passing Interface (Sci-
entific and Engineering Computation). Cambridge, MA: MIT
Press, 1999.

7. Bjornson R, Carriero N, Gelernter D. From weaving threads to
untangling the web: A view of coordination from Linda’s per-
spective. In: Garlan D, LeMétayer D (eds). Coordination Lan-
guages and Models. New York: Springer, 1997:1–17.

8. Dwarkadas S, Schäffer AA, Cottingham RW, Cox AL, Keleher P,
Zwaenepoel W. Parallelization of general linkage analysis prob-
lems. Hum Hered. 1994;44:127–41.

9. Turboblast. Available at: http://www.turboworx.com/solutions/
turboblast/. Accessed Oct 2004.

10. Janaki C, Joshi R. Accelerating comparative genomics using par-
allel computing. In Silico Biology. 2003;3(4):429–40.

11. Li X, Gu W, Mohan S, Baylink DJ. DNA microarrays: their use
and misuse. Microcirculation. 2002;9:13–22.

12. Forster T, Roy D, Ghazal P. Experiments using microarray tech-
nology: limitations and standard operating procedures. Endocri-
nology. 2003;178:195–204.

13. Templin MF, Stoll D, Schrenk M, Traub PC, Vohringer CF, Joos
TO. Protein microarray technology. Trends Biotechnol. 2002;20:
160–6.

14. Patton WF, Schulenberg B, Steinberg TH. Two-dimensional gel
electrophoresis; better than a poke in the ICAT? Curr Opin Bio-
technol. 2002;13:321–8.

15. Bentley J. Programming Pearls. 2nd ed. Reading, MA: Addison-
Wesley, 2000.

16. Kernighan B, Pike R. The Practice of Programming. Reading,
MA: Addison-Wesley, 1999.

17. Aho AV, Sethi R, Ullman JP. Compilers: Principles, Techniques
and Tools. Reading, MA: Addison-Wesley, 1986.

18. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local
alignment search tool. J Mol Biol. 1990;215:403–10.

19. Harrison PM, Carriero NJ, Liu Y, Gerstein M. A PolyORFomic
ANalysis of prokaryote genomes using disabled-homology fil-
tering reveals conserved but undiscovered short ORFs. J Mol
Biol. 2003;333:885–92.

20. Fung ET, Wright GL, Dalmasso EA. Proteomic strategies for bio-
marker identification: progress and challenges. Curr Opin Mol
Ther. 2000;2:643–50.

21. Petricoin EF, Ardekani AM, Hitt BA, et al. Use of proteomic pat-
terns in serum to identify ovarian cancer. Lancet 2002;359:572–7.

22. Breiman L. RandomForest, Technical Report. Berkeley, CA: Sta-
tistics Department, University of California, 2001.

23. Wu B, Abbott T, Fishman D, et al. Comparison of statistical
methods for classification of ovarian cancer using a proteomics
dataset. Bioinformatics. 2003;19:1636–43.

97Journal of the American Medical Informatics Association Volume 12 Number 1 Jan / Feb 2005

24. Carriero NJ, Gelernter DH. Some simple and practical strategies
for parallelism. Algorithms for parallel processing. In: Heath M,
Randade A, Schreiber R (eds). IMAVolumes in Mathematics and
Applications, Volume 105. New York: Springer-Verlag, 1998:
75–88.

25. Carriero N, Gelernter D. Linda in context. Communications
ACM. 1989;32:444–58.

26. Zhang HP, Feng R, Zhu HT. A latent variable model of segrega-
tion analysis for ordinal traits. J Am Stat Assoc. 2003;98:1023–34.

27. Yang YH, Dudoit S, Lu P, Speed TP. Normalization for cDNA
Microarray Data. SPIE BiOS 2001, San Jose, CA, 2001.

28. Kerr MK, Martin M, Churchill GA. Analysis of variance for gene
expression microarray data. J Comput Biol. 2000;7:819–37.

29. Rifkin S, Kim J, White K. Evolution of gene expression in the
Drosophila melanogaster subgroup. Nat Genet. 2003;33:138–44.

30. Kerr MK, Churchill GA. Statistical design and the analysis of
gene expression microarrays. Genet Res. 2001;77:123–8.

31. Wu H, Kerr MK, Cui X, Churchill GA. MAANOVA: A software
package for the analysis of spotted cDNA microarray experi-
ments. In: Parmigiani G, Garrett ES, Irizarry RA, Zeger SL
(eds). The Analysis of Gene Expression Data: Methods and Soft-
ware. New York: Springer, 2003.

98 CARRIERO ET AL., Facilitating HPC in Biomedicine

	A high productivity/low maintenance approach to high-�performance computation for biomedicine: Four case studies
	Goal of this paper
	Background
	Four case studies
	Using the blast sequence comparison program on a massive scale
	Analysis of large mass spectrometry data sets
	Genetic analysis
	Microarray analysis

	Current status and future directions
	Discussion and lessons learned
	Summary of HP/LM HPC techniques
	Treating the bioinformatics program code as an executable specification
	How well will a “Minimalist” approach work?
	An HP/LM model for biomedical HPC collaboration

