
Type of data

Single binary categorical
variable

Single quantitative variable

Two binary categorical
variables

1 categorical (with 2 or
more categories) and 1
quantitative variable

2 quantitative variables

Questions

Is the sample from some 
hypothesized population?

Is the population proportion
equal to some value?

Are the counts in each
category what you would 
expect?

Is the sample from some 
hypothesized population?

Does the sample have 
approximately the same
location as hypothesized?

Does the sample have
approximately the same
spread as hypothesized?

Does the sample have
approximately the same
shape as hypothesized?

Is there an association between
the variables?

There are 3 essential degrees
of association:  (1) nothing
predictive or causal implied - 
the two variables are just
associated; (2) you can predict
the value of one based on the
value of the other to some 
extent. This may not be
reciprocal and may not
imply anything causal; 
(3) varying one of the variables 
causes the other one to also change
in value. Usually you need an 
experiment to de�nititely show
this.

If one variable is considered
an explanatory [(2) and (3) above]
 (or more generally a grouping) 
variable, are the groups di�erent? 
Do they come from populations
with di�erent parametric
counts or proportions? 

Is there an association between
the variables?

There are 3 essential degrees
of association:  (1) nothing
predictive or causal implied - 
the two variables are just
associated; (2) you can predict
the value of one based on the
value of the other to some 
extent. This may not be
reciprocal and may not
imply anything causal; 
(3) varying one of the variables 
causes the other one to also change
in value. Usually you need an 
experiment to de�nititely show
this.

Consider the categorical variable
the grouping variable.
Are the groups di�erent? Do
they come from populations
with di�erent parameters? 

Is there an association between
the variables?

There are 3 essential degrees
of association:  (1) nothing
predictive or causal implied - 
the two variables are just
associated; (2) you can predict
the value of one based on the
value of the other to some 
extent. This may not be
reciprocal and may not
imply anything causal; 
(3) varying one of the variables 
causes the other one to also change
in value. Usually you need an 
experiment to de�nititely show
this.

For correlation the two variables
are on equal footing. This 
statistic/analysis is used 
primarily for (1) above, although
the statistic is related to the
statistic used for regression
in (2) and (3).

Does variation in one variable
predict or cause variation
in the other variable?

Possible choices of statistics

- sample mean: X
- sample median

- sample standard
deviation: SD or s
- sample range

- sample proportion in
one category: p
(if you know one you 
can calculate the other)

- sample counts in one
category

- di�erence between the 
sample proportions for
in one value of the response
variable in each group (A, B) 
(conditional proportions): 

pA - pB 

Choose your statistic
to summarize the groups. 
See possibilities for the single
quantitative variable case 
above.  You will need to 
construct  a statistic comparing
the individual group statistics.

For two groups, you might
investigate whether the group
in�uences location by
using the di�erence in means
or the di�erence in medians
as your statistic.  
If you are interested in comparing
the spread of the data in each group
you might use the ratio of the 
variances of the data in each group.

For two groups or more:
- MAD: mean absolute
di�erence. Take the mean distance
between group means. (Alternatively 
this could be medians if it makes 
more sense for the data).

- F statistic. E�ectively this compares
the variation between groups 
(between group means) to the 
variation within groups (the variation
of each datapoint from its group mean).
It is a ratio of a variance-like term
for group means to a variance-like
term summarizing within group 
variation.

An F statistic is:  Mean Square Groups
                                Mean Square Within

Mean Square Groups is almost the variance
of the group means. The only di�erence is that
in a variance, you subtract o� the mean of your
individual items. If the group sizes are unequal,
then the grand mean (of all the data together)
will not be the same as the mean of the group
means (try it!). To calculate the MSgroups you 
subtract the grand mean from each group mean, 
square that di�erence, add them up across groups,
and divide by g - 1, where g is the number of 
groups.

To get Mean Square Within, you take each 
individual datapoint, subtract o� the mean
of its group, square that di�erence, and add 
those all up.  This is SSwithin. Then divide by
n - g to get MSwithin.
 

For correlation: 
The usual statisic is r, the correlation
coe�cient which has a minimal value
of -1 (perfectly inversely correlated) to
maximal value  of 1 (perfectly correlated).
0 means not correlated at all. 

For regression: 
The slope of the regression line, b, is the 
key summary of how the value of one 
variable depends on the value of the
other.

One important thing to know is:

b = r  SDy 

               SDx

If there were a perfect correlation (r=1)
then the data would all fall on a straight
line.  Then the slope of the line would be
the standard deviation of the Y values divided
by the standard deviation of the X values. 

You can also use an approach similar to that 
for multiple groups/quantitative response
above for regression - you can think of each 
di�erent value of your x variable as being
the basis of a group. In that situation,
you might want to use the F statistic, but we 
will not cover that in class.

In the theory-based approach, you use a 
z-, t-, or F-statistic for the correlation and a
t- or F-statistic for regression. 

Approach to generate a con�dence interval

Bootstrapping
Same approach as for simulating a null
distribution except instead of using a
fraction of π0 use a fraction of p.

Bootstrapping
Just as your sample statistic is your best estimate
of the population parameter, your sample itself
is your best estimate of the population. 
Repeatedly take a sample of size n with replacement
from your sample. Calculate your sample statistic
each time and use these to build a bootstrap 
sampling distribution for your statistic.  

For the percentile method (recommended), choose
a desired con�dence level and use the percentile
method to �nd the boundaries of the con�dence
interval.  Line up your bootstrap replicate statistics
in order. If you have B bootstrap replicates (a big 
number) and c is your con�dence level (e.g. 95%,
99%, etc.), then the lower bound of your con�dence
interval is the B x (1-c)/2 bootstrap statistic value and
the upper bound is the B - [B x (1-c)/2] bootstrap statistic 
value.  For example, if B is 10,000 and c is 84% then
chop o� the bottom 8% (800 values) and chop o� the 
top 8% (800 values).

If your sample size is big enough and your sample
statistic is a mean, you could use the standard deviation
of your bootstrap distribution as an estimate of
the standard error for the mean and plug that
into the statistic +/- multiplier x SE formula like
in the theory-based approach.

 

Bootstrapping
Bootstrap each group in parallel but using 
their own p. See the instructions above for
bootstrapping a single proportion. However,
each time you take a bootstrap sample for
the two groups, calculate your statistic:
bootpA - bootpB. These form your bootstrap 
distribution.  You can also bootstrap counts.

Theory
Conditions: at least 10 counts for each value
of the categorical variable.  π0 not too close 
to 0 or 1.

Use a normal distribution.
Using a proportion as your statistic:
mean:  p   standard error:

Using counts as your statistic:
mean: (n x p) standard error: 

Find the multiplier for your desired con�dence 
level from a table of normal distribution
values. Or you can use a p-value -> z-score 
converter online.  Remember that an X% 
con�dence level corresponds to a (100-X)% 
two-sided signi�cance level.   

p ( 1 - p )
       n

np ( 1 - p )

Theory
Conditions: sample size of at least 20 or
the sample is known (or assumed) to come
from a normally distributed population.

For the mean: use a t-distribution.
mean: X        standard error:

degrees of freedom: n-1

The standardized statistic is called a t-statistic
Find the multiplier for your desired con�dence 
level from a table of t-distribution
values.  Or you can use a p-value -> t-statistic
converter online. Remember that an X% 
con�dence level corresponds to a (100-X)% 
two-sided signi�cance level.  
  

SD
n

Theory
Conditions: at least 10 counts for each cell
in your 2x2 table of counts.

Use a normal distribution.
Using a proportion as your statistic:
mean:  0  standard error:

Note that this standard error is di�erent
from the hypothesis testing one in that
here you use the conditional proportions
while there you use the overall proportion 
(substitute p for pA and pB in the formula 
above and you get the formula to the right). 
This is because here you are estimating a 
di�erence between the two groups, 
however inconsequential it may be.

Find the multiplier for your desired con�dence 
level from a table of normal distribution
values. Or you can use a p-value -> z-score 
converter online.  Remember that an X% 
con�dence level corresponds to a (100-X)% 
two-sided signi�cance level.   

(                                               ) pA (1 - pA)     +  pB (1 - pB) 
       nA                           nB

Bootstrapping

For two groups:
Bootstrap each group in parallel but keeping
the data from each group separate. See the
instructions above for bootstrapping a 
single quantitiative variable. However,
each time you take a bootstrap sample for
the two groups, calculate your statistic on 
the bootstrapped sample groups. These 
form your bootstrap distribution. 

For more than two groups:
This is more complicated. It depends on 
what you really want to estimate. Often
you don’t really want a con�dence interval
for MAD or F. Rather you want con�dence 
intervals for the di�erences between pairs
of populations.  You can do this by bootstrapping
in the same way as for two groups above.
Keep in mind, though, that you are doing
multiple comparisons, so you have similar 
kinds of inaccuracies as you do when doing
multiple hypothesis tests.

If you have evidence from post-hoc tests that
some groups are di�erent while others may
have come from the same population, you
should take this into account in your 
con�dence interval estimation.   If you have
no evidence that the groups are di�erent,
then pool the data together before bootstrapping.
Note that you can estimate con�dence intervals
for the population statistics alone instead of the
di�erences between them or for the (population
mean - grand mean) or whatever makes sense
for your question.

Theory
Conditions: sample size of at least 20 for 
each group or the samples are known 
(or assumed) to come from a normally 
distributed population.

For two groups:
For the mean: use a t-distribution.
mean:  XA - XB        standard error:

degrees of freedom: nA -1 + nB -1 

The standardized statistic is called a t-statistic
Find the multiplier for your desired con�dence 
level from a table of t-distribution
values.  Or you can use a p-value -> t-statistic
converter online. Remember that an X% 
con�dence level corresponds to a (100-X)% 
two-sided signi�cance level.  

For two or more groups:
This is a bit more complicated.  The F statistic
isn’t really what you want to estimate.
Instead, 

For the mean: use an F statistic and distribution.

numerator degrees of freedom: g - 1 
denominator degrees of freedom: n - g 

Compare the F statistic to the cuto� value
from the F distribution for your desired 
signi�cance level.  Like the t-distribution, the
F-distribution is actually a family of distributions, 
and the exact shape depends on the degrees 
of freedom for the numerator and denominator.
Look up the cuto� value in a table or use
an F-statistic <-> pvalue converter online.
 

(                              ) SDA
2     +  SDB

2 
   nA               nB

Bootstrapping
(much easier and more versatile than theory)
For both correlation and regression:
Sample observational units with 
replacement. These are your bootstrap
samples.  Calculate the correlation
coe�cient or any feature of the regression 
line including the slope (which is the mean
response), the intercept, and a con�dence
interval for an individual response.
These bootstrap statistics form your
bootstrap sampling distribution.

Theory
Conditions:  see the conditions
for hypothesis testing.

For correlation and regression:
See instructions for �nding
the standard errors in hypothesis
testing. Then use the usual way
of constructing theory based 
con�dence intervals:

statistic +/- multiplier x SE

with multiplier from the 
t or normal distributions.  See
the hypothesis testing instructions.

Note that for regression the standard
error in the left column is for the slope
which gives the mean response. 
To construct a con�dence interval
for the intercept or a “prediction
interval” for an individual response
for a speci�c value of X, you would need
to use a di�erent SE. 

Approach to generate a null distribution

Simulation
Imagine (or using the computer) putting
an in�nite number of white and black balls
into a jar so that a fraction π0 of them are 
black.  Then draw a sample of size
n from the urn, calculate the fraction of black
balls (or the counts if that is your chosen statistic),
record this statistic on a dotplot, and
put the sampled balls back in. Repeat this
many times.

Simulation
You need to construct a population from
which to sample. Unlike the case of a 
single categorical binary variable, here
you know far less about the population.
You will have to make some assumptions
about what it looks like.  A common 
situation is that you assume that your 
variable is normally distributed in the 
population with mean μ0 and the same
standard deviation as your sample. You may
sometime �nd yourself in a situation where 
you want to make other assumptions about 
the population distribution.  Repeatedly
take samples of size n from your assumed
population, calculate your statistic, and 
use these to construct a null distribution.

Theory
Conditions: sample size of at least 20 or
the sample is known (or assumed) to come
from a normally distributed population.

For the mean: use a t-distribution.
mean:  μ0        standard error:

degrees of freedom: n-1

The standardized statistic is called a t-statistic
Find the cuto� for your desired signi�cance 
level from a table of t-distribution
values. Pay attention to whether your HA is
one-sided or two-sided.  Or you can use a 
t-statistic -> p-value converter online.   

SD
n

Theory
Conditions: at least 10 counts for each value
of the categorical variable.  π0 not too close 
to 0 or 1.

Use a normal distribution.
Using a proportion as your statistic:
mean:  π0   standard error:

Using counts as your statistic:
mean: (n x π0) standard error: 

The standardized statistic is called a z-score
Find the cuto� for your desired signi�cance 
level from a table of normal distribution
values. Pay attention to whether your HA is
one-sided or two-sided. Or you can use a 
z-score -> p-value converter online.   

p ( 1 - p )
       n

np ( 1 - p )

Simulation
Shu�ing/scrambling approach.  You want 
to break any potential association 
between the grouping (explanatory) 
and response variables. Imagine all your
data in two columns. The �rst column has 
the group, the second has the response. 
Each row represents the data from a 
single observational unit.  Now randomize
the order of the values in one of the columns. 
This way the number of observational units in 
each group remains the same and the number
of responses in each category remains the 
same, but any association between the two
variables is scrambled.  Each time you scramble
calculate your statistic on the scrambled data.
This generates your null distribution.

Theory
Conditions: at least 10 counts for each cell in 
your 2x2 table of counts.

Use a normal distribution. 
The mean will be 0. The standard error is:

p here is the overall proportion in the 
dataset, not a conditional proportion. You 
use the overall proportion because your
null hypothesis is that the groups are not
di�erent (they are from the same population)
and so your best estimate of the population 
parametric proportion is the overall proportion
in your dataset.

The standardized statistic is called a z-score
Find the cuto� for your desired signi�cance 
level from a table of normal distribution
values. Pay attention to whether your HA is
one-sided or two-sided. Or you can use a 
z-score -> p-value converter online.   

p ( 1 - p ) (                ) 1          1 
 nA   +  nB

Simulation
Shu�ing/scrambling approach.  You want 
to break any potential association 
between the grouping (explanatory) 
and response variables. Imagine all your
data in two columns. The �rst column has 
the group, the second has the response. 
Each row represents the data from a 
single observational unit.  Now randomize
the order of the values in of one of the columns. 
This way thenumber of observational units in each
group remains the same and the speci�c values in
the dataset remain the same, but any association 
between the two variables is scrambled.  Each time 
you scramble calculate your statistic on the 
scrambled data. This generates your null distribution.

The MAD and F statistics are overall statistics - 
they summarize variation in all of the groups
together.  Let’s say you reject your null hypothesis
that all the group means are equal. You may then want 
to know which group is di�erent. You can use a
“post-hoc” test to test whether pairs of groups
are di�erent from each other. The most famous
one is Tukey’s Honestly Signi�cant Di�erence
test. You can read about it here:
http://web.mst.edu/~psyworld/tukeyssteps.htm
or just search for it on Wikipedia.
 For the simulation version, do the scrambling
approach as described above, except you want
to construct a null distribution comprised of the 
maximal di�erences between group means. In
one iteration you would scramble your data, 
calculate the group means, compute the absolute
di�erence between all pairs of group means, and
then �nd the biggest absolute di�erence. This
is your statistic and is one dot on your null
distribution dotplot.  Repeat this many times.
Then look at the di�erences between means from
your actual data and compare them to this 
distribution. You do this in a particular order.
Order your means from smallest to largest. Say 
there are 4 groups. Then compare 4 vs. 1, 4 vs. 2,
4 vs. 3, 3 vs. 1, 3 vs. 2, 2 vs. 1. Use the following logic:
If 4 vs. 2 are not signi�cantly di�erent, then neither
will 4 vs. 3 or 3 vs. 2 (remember they are ordered).
So don’t bother doing those. However, this doesn’t 
tell you about 3 vs. 1 or 2 vs. 1 so you’ d want to 
test those. Your null distribution is the biggest di�erences
between groups that you would expect by chance 
and so you are asking, “is the di�erence between 
group A and group B even bigger than the biggest 
di�erence I’d expect by chance.”

Remember that the simulation approach doesn’t
con�ne you to using the mean as your summary 
statistic. You could choose to use the median or
other statistic that makes sense for your question
and data.

Theory
Conditions: sample size of at least 20 for 
each group or the samples are known 
(or assumed) to come from a normally 
distributed population. For multiple
groups, the standard deviations of the
groups should be roughly equal:
(the largest should be less than 
twice the smallest)

For two groups:
For the mean: use a t-distribution.
mean:  0        standard error:

degrees of freedom: nA -1 + nB -1 

The standardized statistic is called a t-statistic
Find the cuto� for your desired signi�cance 
level from a table of t-distribution
values. Pay attention to whether your HA is
one-sided or two-sided.  Or you can use a 
t-statistic -> p-value converter online.

For two or more groups:
For the mean: use an F statistic and distribution.

numerator degrees of freedom: g - 1 
denominator degrees of freedom: n - g 

Compare the F statistic to the cuto� value
from the F distribution for your desired 
signi�cance level.  Like the t-distribution, the
F-distribution is actually a family of distributions, 
and the exact shape depends on the degrees 
of freedom for the numerator and denominator.
Look up the cuto� value in a table or use
an F-statistic <-> pvalue converter online.

See the web links above in the simulation section
for the theory-based ways to determine 
which means are di�erent. 

(                              ) SDA
2     +  SDB

2 
   nA               nB

Simulation 
(much easier than theory)
Shu�ing/scrambling approach.  You want 
to break any potential association 
between the two  variables. Imagine all your
data in two columns. Each column has the values
for one of the variables.  Each row represents the 
data from a single observational unit.  Now 
randomize the order the values in one of the 
columns. This way he number of observational 
units remains the same and the values in the 
dataset remain the same, but any association 
between the two variables is scrambled.  Each 
time you scramble calculate your statistic on 
the scrambled data. This generates your null 
distribution.  While the simulation approaches
are just great in general, the one for correlation
is especially clean and simple.  Because this 
shu�ing breaks any associations between the
variables, the null is no association for both
correlation and regression (ρ=0 or  β=0). There
are cases where you might want to test whether
your sample slope or correlation is di�erent from a 
speci�ed non-zero value. In these cases either use 
the theory-based approach below or construct a 
con�dence interval and see if the hypothesized null
parameter falls within it.

1 - r2

n-2

(             ) 1 + r 
 1 - r   

   1   
n-3

Theory
For correlation:

Conditions: both variables come from a
normally distributed population and the
Y values at each X are normally distributed, 
and the X values at each Y are normally 
distributed in the population.

If ρ0 = 0, then standardize r by dividing by
its standard error:

Compare this to a t-distribution with
n-2 degrees of freedom.

If ρ0 = 0, then �rst transform r into
what is confusingly often called z.  
This is not yet a z-score but is the 
precursor to one:

z = 0.5 x ln

where ln is the natural log.

Transform ρ0 using this formula too into
a null parameter called ζ0 (that’s a Greek zeta).

Then compute the standardized z-score in 
the normal way using the standard error of z:

like most aspects of the theory-based approach, 
this estimate of SEz improves as n gets bigger.

�nal standardized z-statistic:  z -  ζ0
                                                            SEz

compare this statistic to a normal distribution.

For regression:

Conditions: for each value of X there is
a normal distribution of Y values in the 
population and all these normal distributions
have the same variance.  The actual relationship 
between X and Y is linear. The X values are known
without error or at least the error (e.g. measurement
error) is much smaller than the error in measuring Y.
The theory approach works alright even if some 
of these don’t hold.

standard error for the slope:

            SDy

                SDx

Note that this is just the standard error for the 
correlation coe�cient multiplied by the slope
if the correlation were perfect.

Then construct the standardized statistic in
the usual way.  Compare it to a t-distribution
with n-2 degrees of freedom.

1 - r2

n-2

Possible H0 & HA

H0: π = π0
HA:  π  >  =  <  π0

H0: μ = μ0
HA:  μ  >  =  <  μ0

or equivalent for
other statistics

H0: πA - πB  = 0
HA: πA - πB  > = < 0  

For comparing
the location
of two groups:
H0: μA - μB  = 0
HA: μA - μB  > = < 0  

or you might have
chosen a di�erent
statistic like median.

For comparing the
location of two or
more groups:

H0: μA = μB = ... = μZ
HA: At least one of the
group means is di�erent.

In practice, this formulation
of the null and alternative
hypotheses is di�cult to 
test directly. So they have 
to be rephrased in terms
of the statistic used (we have
learned MAD and F).

H0: MAD  =  0
HA: MAD  >  0

H0: F = 1
HA: F > 1

Note that both of these are
one-sided. MAD cannot be 
negative.
If F < 1 then this means that 
groups are very similar to each
other, but we aren’t interested
in whether they are overly 
similar, only if there is evidence
that there is at least one
di�erence.

For correlation:
H0: ρ = 0
HA: ρ  > = < 0  
(note that 0 means no 
correlation.  It is possible
to test whether the correlation 
coe�cient equals some 
hypothesized null value with 
a modi�cation of the test statistic.
See the theory-based section to 
the right.  Or use CIs.)  

For regression:

H0: β = β0
HA: β  > = < β0

Often you will want
to test whether the 
slope is β0 = 0, but
you may have prior
information or a 
previous result that 
suggests a non-zero
null value to test.

If you use a theory-based
approach, you will use 
either a z-statistic or a 
t-statistic so the 
hypotheses get 
translated into:

H0: Z = 0
HA: Z > = < 0

and

H0: t = 0
HA: t > = < 0
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