Serum YKL-40 is increased in patients with hepatic fibrosis

Julia S. Johansen1, Per Christoffersen4, Søren Møller3, Paul A. Price5, Jens H. Henriksen3, Charly Garbarsch6 and Flemming Bendtsen2

Department of Medicine, 1Division of Rheumatology and 2Department of Gastroenterology, Medical Division, 3Department of Clinical Physiology and Nuclear Medicine, 4Department of Pathology, Hvidovre Hospital, and 6Institute of Medical Anatomy Section A, The Panum Institute, University of Copenhagen, Denmark; 5Department of Biology 0368, University of California, San Diego, La Jolla, CA, USA

Background/Aims: YKL-40, a mammalian member of the chitinase family, is a lectin that binds heparin and chitin. The function of YKL-40 is unknown, but it may function in tissue remodelling. The aims of this study were to assess the level of circulating YKL-40 in patients with various kinds and degree of chronic liver disease and its possible relation to liver fibrosis.

Methods: Serum YKL-40 levels were determined by radioimmunoassay in 129 patients with suspected liver disease and related to histological findings and immunohistochemical staining of YKL-40 in a liver biopsy taken simultaneously with the blood sample.

Results: The median serum YKL-40 was highest in patients with alcoholic cirrhosis (532 µg/l), in particular in patients with additional alcoholic hepatitis (740 µg/l). Patients with alcoholic cirrhosis, post-hepatitic cirrhosis (425 µg/l) and non-cirrhotic fibrosis (330 µg/l) had significantly higher serum YKL-40 than normal subjects (102 µg/l), patients with fatty liver (195 µg/l) or patients with viral hepatitis without fibrosis (174 µg/l). Serum YKL-40 was significantly (p<0.001) related to the degree of liver fibrosis with the highest levels in patients with moderate (466 µg/l) to severe (676 µg/l) fibrosis. Serum YKL-40 was also increased (p=0.018) in patients with slight fibrosis (270 µg/l) compared to patients without fibrosis. Immunohistochemical analysis demonstrated positive staining for YKL-40 antigen in areas with fibrosis, particularly areas with active fibrogenesis. YKL-40 staining was never found in hepatocytes.

Conclusions: Our study indicates that the increased serum YKL-40 in patients with liver disease of various degree and aetiology seems to reflect fibrosis and fibrogenesis.

Key words: Alcoholic liver disease; HC gp-39; Liver fibrogenesis; Liver fibrosis; YKL-40.

Hepatic fibrosis is a complex and dynamic process that involves activation of cells producing matrix material, changes in the extracellular matrix components and tissue remodelling (1). Conventional biochemical and serological tests are of little value for diagnosis of the degree of liver fibrosis and the activity of fibrogenesis, and percutaneous liver biopsy is therefore used to assess the extent of liver fibrosis and fibrogenesis (1,2). However, a liver biopsy is sometimes of questionable value because of the heterogeneous distribution of pathological changes in the liver. For years there has been a search for biochemical or serological markers reflecting fibrotic processes in liver disease. Markers that detect patients with ongoing fibrosis at an early stage, before irreversible damage has developed, would be an important addition to the clinician's diagnostic and prognostic tools (1-3).

YKL-40 is a mammalian member of a chitinase family (family 18-glycosylhydrolases) (4-13). The physiological function of YKL-40 is not known, but the pattern of its expression in normal and diseased states suggests that it could function in remodelling of the extracellular matrix or in tissue inflammation (4-16). YKL-40 mRNA expression is found in human...
liver (5). We have recently reported in a small study of patients with chronic liver disease that plasma YKL-40 is elevated in patients with chronic liver disease and may be related to the degree of liver fibrosis (17). Moreover, YKL-40 is released from the hepatosplanchnic system (17).

The purpose of the present study was to assess whether serum YKL-40 reflects the severity of liver fibrosis. We measured the serum levels of YKL-40, the aminoterminal propeptide of type III procollagen (PIIINP) and hyaluronan in patients with various liver diseases. We compared the serum YKL-40 values with histological changes in liver biopsies. Especially the degree of fibrosis and ongoing fibrogenesis was related to serum YKL-40 and to the degree of immunohistochemical YKL-40 staining in the liver biopsy.

Materials and Methods

Patients

The study included 129 biopsies from consecutive patients (82 men and 47 women with a median age of 49 years (range 24–80 years) referred to the Department of Gastroenterology between December 1992 and November 1994 with suspicion of liver disease. A blood sample and a liver biopsy were taken simultaneously from each patient. Diagnosis of the liver disease was based on histology and accepted biochemical and clinical criteria. Four subjects did not have any signs of liver disease or other diseases; 16 patients had fatty liver; 31 patients had non-cirrhotic liver fibrosis (26 patients were alcoholics, one had severe obesity, one had been intoxicated with halothane, and three had cryptogenic liver fibrosis); 51 patients had alcoholic cirrhosis, one had severe obesity, one had been intoxicated with halothane, and three had cryptogenic liver fibrosis; 51 patients had alcoholic cirrhosis; 10 patients had posthepatitic cirrhosis (type B virus (n=5)); and 10 patients had posthepatitic cirrhosis (type B virus (n=2), type C virus (n=2), and both type B and C virus (n=6)). The main morphological diagnoses as well as pertinent clinical and biochemical parameters of the patients are summarised in Table 1. The collection of the material in the study was approved by the local ethics committee.

Histological methods

All liver biopsies were performed percutaneously according to the Menghini technique, with a needle diameter of 1.6 mm (18). The biopsy material was divided, and one of the two parts was fixed in neutral formalin and the other part was immediately frozen at −80°C. The formalin-fixed tissue was embedded in Paraplast® and cut in 5-μm thick serial sections (54 sections). The 129 biopsies from the 129 patients were assessed by two of the investigators (PC & JSJ) in close co-operation, without knowledge of clinical, biochemical or serological findings. PC is a specialist in pathology with special experience in liver pathology (19).

The following stainings were carried out on all biopsies: Hematoxylin-Eosin, Van Gieson Hansen, PAS after diastase, Orycin, Giemsa silver impregnation for reticulin fibres, Perl’s stain and Methyl Green Pyronin. The histological findings were assessed as previously described (19). For each biopsy, the degree of fibrosis was estimated semi-quantitatively and graded on a scale of 0–3: 0, representing no increase in any part of the biopsy; 1, questionable/minimal increase, i.e. enhanced connective tissue staining in the central part of the lobule with a few coarse perisinusoidal fibers present, but with a preserved architecture; 2, moderate increase, i.e. a distinct occurrence of pericellular and perisinusoidal coarse fibers occasionally accompanied by a moderate portal and periportal fibrosis, but with preserved lobular architecture; and 3, severe increase with bridging fibrosis and with extensive portal and periportal fibrosis. In addition the occurrence of immature connective tissue in the border area between parenchyma and mature connective tissue, an indication for ongoing fibrogenesis, was semi-quantitatively graded on a scale of 0–3: 0, representing no occurrence of immature connective tissue; 1, slight; 2, moderate and 3, severe occurrence.

Biochemical and serological methods

Serum samples, collected in the morning simultaneously with the liver biopsy, were stored at −20°C until analysed. Routine biochemical tests (haemoglobin, serum alkaline phosphatase, serum aspartate aminotransferase, bilirubin, coagulation factors II, VII, X index, serum albumin and serum creatinine) were carried out with automated techniques (SMAC).

Table 1

<table>
<thead>
<tr>
<th>Group</th>
<th>n</th>
<th>Age (years)</th>
<th>Serum ASAT (10–40 U/l)</th>
<th>Serum AP (50–275 U/l)</th>
<th>Serum bilirubin (3–17 μmol/l)</th>
<th>Serum albumin (540–800 μmol/l)</th>
<th>Factors (2.7,10)</th>
<th>Serum creatinine (49–121 μmol/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>4</td>
<td>39 (26–59)</td>
<td>58 (28–100)</td>
<td>323 (142–609)</td>
<td>15 (9–26)</td>
<td>644 (639–655)</td>
<td>0.96 (0.86–1.3)</td>
<td>78 (56–86)</td>
</tr>
<tr>
<td>Fatty liver</td>
<td>16</td>
<td>47 (28–62)</td>
<td>52 (18–326)</td>
<td>313 (153–1078)</td>
<td>8 (5–18)</td>
<td>547 (402–714)</td>
<td>1.12 (0.54–1.3)</td>
<td>70 (48–128)</td>
</tr>
<tr>
<td>Viral hepatitis</td>
<td>17</td>
<td>44 (24–64)</td>
<td>53 (8–800)</td>
<td>200 (134–655)</td>
<td>13 (6–212)</td>
<td>637 (479–729)</td>
<td>0.92 (0.50–1.3)</td>
<td>72 (56–95)</td>
</tr>
<tr>
<td>Non-cirrhotic</td>
<td>31</td>
<td>49 (25–78)</td>
<td>59 (28–499)</td>
<td>265 (120–1299)</td>
<td>14 (4–46)</td>
<td>583 (234–741)</td>
<td>1.01 (0.56–1.3)</td>
<td>67 (46–113)</td>
</tr>
<tr>
<td>Cirrhosis</td>
<td>10</td>
<td>45 (26–80)</td>
<td>86 (42–249)</td>
<td>249 (139–1302)</td>
<td>9 (4–55)</td>
<td>608 (423–671)</td>
<td>0.93 (0.46–1.18)</td>
<td>67 (54–127)</td>
</tr>
<tr>
<td>Alcoholic cirrhosis</td>
<td>51</td>
<td>53 (30–74)</td>
<td>88 (22–1120)</td>
<td>372 (167–1672)</td>
<td>25 (6–731)</td>
<td>499 (378–694)</td>
<td>0.81 (0.18–1.3)</td>
<td>71 (34–566)</td>
</tr>
</tbody>
</table>

Values are median (range). ASAT = aspartate aminotransferase; AP = alkaline phosphatase. † = normal range.
Serum YKL-40 and liver fibrosis

Bovine cartilage. The intra- and inter-assay coefficients of variation were 10% and 8%. The median serum hyaluronan in 247 healthy adults was 28 μg/l (upper 95th percentile=97 μg/l) (22).

Immunohistochemical methods for YKL-40
Frozen samples of liver tissue were cut at 5 μm and stained routinely with haematoxylin and eosin in order to establish that the tissue was well conserved and neighbouring sections were used for immunolocalization of YKL-40 antigen using specific antisera. Prior to immunostaining sections were methanol-fixed at −20°C for 5 min. Conventional alkaline phosphatase staining technique for polyclonal antibodies was used as previously described (17). Briefly the following steps were included (all performed at room temperature): non-specific binding was blocked by incubation for 5 min with 4% bovine serum albumin (BSA) (Sigma A-4503) in Tris buffered saline (TBS); binding of primary antibody was performed for 30 min with an affinity-purified rabbit polyclonal IgG against human YKL-40 diluted in TBS containing 4% BSA (IgG concentration of the YKL-40 antibody was 66 μg/ml). Non-immune rabbit serum (Dako X936, Copenhagen, Denmark) was used as negative controls in the same IgG concentration of 66 μg/ml in TBS containing 4% BSA. The slides were then washed 3 times with TBS and incubated for 30 min with alkaline phosphatase-conjugated swine antibodies to rabbit immunoglobulins (Dako D306) diluted 1:20 in TBS containing 4% BSA, washed twice in TBS and then incubated for 10 min with 0.05 M Tris/HCl, pH 7.6, washed twice with 0.2 M Tris/HCl, pH 9.5 and then incubated for 5 min with 0.75 mg/ml levamisol (Sigma L-9756) in 0.2 M Tris/HCl, pH 9.5. The slides were then stained for 30 min with Sigma FAST™BCIP/NBT tablets (Sigma B-5655) with 0.75 mg/ml levamisol in 0.2 M Tris/HCl, pH 9.5. The colour reaction was stopped by washing in running tap water and the slides were mounted in Glycergel (Dako).

Each liver specimen was microscopically examined blindly and scored for the presence of YKL-40 expression in a scale as follows: score 0=no YKL-40 staining; score 1=scanty YKL-40 staining; and score 2=moderate to intense YKL-40 staining.

Statistical analysis
The statistical analyses were done with SigmaStat (SPSS, Chicago, IL, USA) and SAS® (SAS Institute, Cary, NC, USA). Results are given as median and range. Comparison between groups was performed by the non-parametric Mann-Whitney rank sum test or the Kruskal-Wallis test for unpaired differences. Correlation analysis was based on the Spearman's rho test. p-values less than 0.05 were considered to be significant. In a multiple regression model serum YKL-40, PIIINP and hyaluronan were logarithmically transformed and related to the degree of liver fibrosis (treated as an ordinal variable with four categories) through a proportional odds regression model for ordinal data (23).

Results
The individual concentrations of serum YKL-40, PIIINP and hyaluronan in relation to the various liver diseases, determined by histopathological and clinical criteria, are illustrated in Fig. 1 (a, b and c) and the median levels are given in Table 2. The serum YKL-40 levels were highest in patients with alcoholic liver cirrhosis (median 532 μg/l and 5-fold increased compared with the median level of healthy age-matched controls), posthepatitic cirrhosis (425 μg/l) and non-cirrhotic fibrosis (330 μg/l), and these serum YKL-40 levels were significantly (p<0.01) higher than serum YKL-40 values in age-matched controls (102 μg/l; upper 95th percentile=247 μg/l), in patients with fatty liver (195 μg/l), and in patients with chronic viral hepatitis without cirrhosis (174 μg/l). Multiple comparison between the different groups of patients with liver disease showed that patients with alcoholic cirrhosis had significantly higher serum YKL-40, PIIINP and hyaluronan concentrations than patients with non-cirrhotic fibrosis, viral hepatitis and fatty liver (Table 2) (Kruskal-Wallis one way ANOVA on ranks with Dunn's method: p<0.05). A significant difference between alcoholic and posthepatitic cirrhosis was only found in serum PIIINP levels.

Fig. 1. Serum concentrations of YKL-40 (a), PIIINP (b) and hyaluronan (c) in patients with different liver diseases. The bars represent median values. The horizontal lines represent the upper limit (95th percentile) of the normal range of serum YKL-40 (247 μg/l), serum PIIINP (5.4 μg/l) and serum hyaluronan (97 μg/l). (●) patients with alcoholic cirrhosis in combination with alcoholic hepatitis and (▲) patients without alcoholic hepatitis. (○) all other patients.
TABLE 2
Serum YKL-40, PIIINP and hyaluronan concentrations in patients with different liver diseases

<table>
<thead>
<tr>
<th>Serum YKL-40</th>
<th>Serum PIIINP</th>
<th>Serum hyaluronan</th>
</tr>
</thead>
<tbody>
<tr>
<td>(µg/l)</td>
<td>(µg/l)</td>
<td>(µg/l)</td>
</tr>
<tr>
<td>Normal</td>
<td>118* (105–165)</td>
<td>3.0* (3.0–5.0)</td>
</tr>
<tr>
<td>Fatty liver</td>
<td>195* (50–408)</td>
<td>4.9* (1.7–10.1)</td>
</tr>
<tr>
<td>Viral hepatitis</td>
<td>174* (111–380)</td>
<td>5.2* (2.4–27.0)</td>
</tr>
<tr>
<td>Non-cirrhotic fibrosis</td>
<td>330* (115–967)</td>
<td>6.4* (2.6–12.6)</td>
</tr>
<tr>
<td>Posthepatitic cirrhosis</td>
<td>425 (145–2070)</td>
<td>8.4* (3.2–21.0)</td>
</tr>
<tr>
<td>Alcoholic cirrhosis</td>
<td>532 (82–4850)</td>
<td>17.6 (5.1–70.0)</td>
</tr>
</tbody>
</table>

Values are medians (range). PIIINP=N-terminal propeptide of type III procollagen.
Kruskal-Wallis one-way ANOVA on ranks with multiple comparisons, Dunn’s method: *p<0.05 vs. alcoholic cirrhosis.

Serum YKL-40 levels were significantly (p=0.014) higher in the subset of patients with alcoholic cirrhosis who also had alcoholic hepatitis (median 740 µg/l; 30 of these 31 patients had elevated serum YKL-40 (i.e. above the upper 95th percentile level of the controls, i.e. >247 µg/l)) compared with patients with alcoholic cirrhosis without hepatitis (median 338 µg/l; 14 of these 20 patients had elevated serum YKL-40). No differences between these two patient groups were found in serum PIIINP (17.4 vs. 19.7 µg/l, p=0.7) or serum hyaluronan (258 vs. 238 µg/l, p=0.3). Sixteen (52%) of the 31 patients with alcoholic cirrhosis in combination with alcoholic hepatitis had severe fibrosis compared to only four (20%) of the patients with alcoholic cirrhosis without alcoholic hepatitis.

The individual concentrations of serum YKL-40, PIIINP and hyaluronan in relation to the degree of liver fibrosis defined histologically are illustrated in Fig. 2 (a, b and c). All three biochemical parameters correlated with the degree of liver fibrosis (Spearman’s rank correlation, p<0.001). The serum concentration of YKL-40 was highest in patients with severe fibrosis (median 676 µg/l) followed by patients with moderate fibrosis (466 µg/l) (Kruskal-Wallis one-way ANOVA on ranks between the four different groups of fibrosis, p<0.001). Moreover, patients with slight fibrosis had significantly elevated serum YKL-40 compared with patients with no fibrosis (270 vs. 174 µg/l, p=0.018). Serum PIIINP and hyaluronan concentrations were also highest in patients with severe or moderate fibrosis. These two biochemical markers could also discriminate between patients with slight fibrosis and patients without fibrosis (serum PIIINP: 5.9 vs. 5.0 µg/l, p=0.021; serum hyaluronan: 42.0 vs. 27.5 µg/l, p=0.005). However, the median serum hyaluronan level was normal in both patients without fibrosis and pa-

Fig. 2. Serum concentrations of YKL-40 (a), PIIINP (b), and hyaluronan (c) in patients with liver diseases and different histological degree of liver fibrosis. The definition of liver fibrosis grade is described in the Methods section. The bars represent median values. The horizontal lines represent the upper limit (95th percentile) of the normal range of serum YKL-40 (247 µg/l), serum PIIINP (5.4 µg/l) and serum hyaluronan (97 µg/l). (●) patients with alcoholic cirrhosis. (○) all other patients.
TABLE 3
Correlation between serum YKL-40, PIIINP, hyaluronan and parameters of liver function in patients with liver disease

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Serum YKL-40 (µg/l)</th>
<th>Serum PIIINP (µg/l)</th>
<th>Serum hyaluronan (µg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serum PIIINP (µg/l)</td>
<td>0.44***</td>
<td>–</td>
<td>0.81***</td>
</tr>
<tr>
<td>Serum hyaluronan (µg/l)</td>
<td>0.57***</td>
<td>0.81***</td>
<td>–</td>
</tr>
<tr>
<td>Serum aspartate aminotransferase (U/l)</td>
<td>0.34***</td>
<td>0.35***</td>
<td>0.28**</td>
</tr>
<tr>
<td>Serum alkaline phosphatase (U/l)</td>
<td>0.32***</td>
<td>0.49***</td>
<td>0.48***</td>
</tr>
<tr>
<td>Serum bilirubin (µmol/l)</td>
<td>0.22</td>
<td>0.42***</td>
<td>0.44***</td>
</tr>
<tr>
<td>Serum albumin (µmol/l)</td>
<td>-0.52***</td>
<td>-0.52***</td>
<td>-0.69***</td>
</tr>
<tr>
<td>Coagulation factors II, VII, and X</td>
<td>-0.25***</td>
<td>-0.36***</td>
<td>-0.49***</td>
</tr>
</tbody>
</table>

Values are Spearman’s rho: ** p<0.01, *** p<0.001. PIIINP=N-terminal propeptide of type III procollagen.

TABLE 4
Relationship between the expression of YKL-40 in liver biopsies and the degree of liver fibrosis and fibrogenesis

<table>
<thead>
<tr>
<th>Fibrosis</th>
<th>Fibrogenesis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No (n=14)</td>
</tr>
<tr>
<td>No YKL-40 staining</td>
<td>22%</td>
</tr>
<tr>
<td>Slight YKL-40 staining</td>
<td>57%</td>
</tr>
<tr>
<td>Moderate to Intense YKL-40 staining</td>
<td>21%</td>
</tr>
</tbody>
</table>

The values shown represent the percentage value of sections with a YKL-40 staining score (no, slight or moderate/intense) out of the total number of sections described with no fibrosis, slight fibrosis or moderate/severe fibrosis and no fibrogenesis, slight fibrogenesis or moderate/severe fibrogenesis (as defined in “Materials and Methods”).

Patients with slight fibrosis and the percentage number of patients with elevated serum PIIINP in patients without fibrosis was 56% compared with 79% of the patients with slight fibrosis.

The degree of liver fibrosis was also treated as an ordinal variable with four categories and it was related to serum YKL-40, PIIINP and hyaluronan through a proportional odds regression model for ordinal data (23). When evaluated separately, each marker was found to predict the stage of fibrosis better when it was transformed to logarithms. In a multiple regression model, all logarithmically transformed markers were found to contribute with independent information (all significant at a 1% level) of the degree of liver fibrosis and the odds ratios (OR) corresponding to a doubling of each marker were: hyaluronan (OR = 1.5, 95% confidence limits = 1.1-2.1); YKL-40 (OR = 1.7, 95% confidence limits = 1.2-2.4); and PIIINP (OR = 2.3, 95% confidence limits = 1.4-3.8).

Table 3 shows the relationship between serum YKL-40, PIIINP, hyaluronan and the biochemical liver function tests. High correlations were found between serum PIIINP and serum hyaluronan (rho = 0.81, p<0.001) and between serum YKL-40 and serum hyaluronan (rho = 0.57, p<0.001). Serum YKL-40 correlated also (albeit with lower correlation coefficients) with serum PIIINP, alkaline phosphatase, aspartate aminotransferase and inversely with serum albumin and coagulation factors II, VII, X index.

Immunohistochemical investigation
Positive staining for YKL-40 was never detected in hepatocytes or in the connective tissue of normal liver (Fig. 3a). In biopsies from patients with liver disease staining for YKL-40 antigen was found in areas with slight fibrosis either pericellular or perisinusoidal, in areas with moderate or severe fibrosis, and along the fibrotic septa in association with areas of fibrogenesis (Fig. 3b and 3c). If the fibrotic septa consisted only of old mature collagen without signs of fibrogenesis, then no expression of the YKL-40 antigen was detected (Fig. 3d). In some patients with “fatty liver” positive staining for YKL-40 antigen was found in the connective tissue around the portal tract. In patients with chronic active hepatitis C virus, intense staining for YKL-40 was detected in areas with piecemeal necroses, but not in areas with lymphocytes (Fig. 3e). In all liver biopsies with fibrosis and/or fibrogenesis YKL-40 staining was found in extracellular areas free of cells as well as in cellular areas. In cellular areas it was not possible to discriminate the extent to which staining was intracellular.

The relationship between the staining of YKL-40 in liver biopsies and the degree of liver fibrosis and fibro-
Fig. 3. Representative light micrographs of immunohistochemical staining of YKL-40 in six cryostat liver biopsies stained with an affinity-purified polyclonal rabbit antibody against human YKL-40. a) normal liver (serum YKL-40=105 µg/l): no staining for YKL-40 in hepatocytes and slight positive staining for YKL-40 is limited to mesenchymal structures within the portal tract. b) non-cirrhotic liver fibrosis (205 µg/l): positive staining for YKL-40 in areas with fibrosis along the portal tracts. c) alcoholic cirrhosis with fibrogenesis and alcoholic hepatitis (2160 µg/l): intense staining for YKL-40 in areas with active fibrogenesis and slight staining along the sinusoids. d) inactive alcoholic cirrhosis (532 µg/l): slight YKL-40 staining on the surface of the fibrotic septa and no staining inside the septa with mature collagen. e) chronic active hepatitis C virus (175 µg/l): staining for YKL-40 in areas with fibrosis along the portal tracts and in areas with piecemeal necrosis. f) liver necrosis in a patient with forward failure (490 µg/l): strong YKL-40 staining in areas with neutrophils and necrosis. All are magnification ×250.
Discussion
Our present findings confirm that serum YKL-40 concentration is increased in patients with chronic liver disease. Most of the patients with alcoholic cirrhosis or posthepatic cirrhosis had elevated serum YKL-40, and the highest levels were found in patients with alcoholic cirrhosis in combination with alcoholic hepatitis. These patients had a median level of serum YKL-40 which was 3-fold higher than the upper normal level, and many had more than 5-fold elevated serum YKL-40. Patients with non-cirrhotic fibrosis had serum YKL-40 levels ranging from the normal range to highly increased levels as found in cirrhosis. Serum YKL-40 was closely related to the degree of fibrosis determined histologically with the highest levels in patients with moderate to severe fibrosis. Serum YKL-40 was elevated to a lesser extent in patients with slight fibrosis, but this elevation was still significantly greater than that seen in patients with no fibrosis.

We also investigated the localisation of YKL-40 in cryostat liver biopsy specimens using immunohistochemical staining. Positive staining for YKL-40 was found in the extracellular matrix in the fibrotic liver, but was not found in hepatocytes or in normal liver. A relation was found between the degree of positive staining of YKL-40 and the degree of liver fibrosis and fibrogenesis in the same biopsy. Patients with slight fibrosis had positive staining of YKL-40 in the areas of increased connective tissue around the portal tracts. In liver biopsies demonstrating alcoholic cirrhosis in combination with alcoholic hepatitis, an intense staining of the YKL-40 antigen was found in areas with ongoing fibrogenesis. No staining for YKL-40 was found in the old mature fibrotic septa, which lacked signs of fibrogenesis. These findings suggest that variations in serum YKL-40 are independent of liver disease aetiology but depend on the degree of liver fibrosis and ongoing fibrogenesis.

Low correlations were found between serum YKL-40 and serum alkaline phosphatase or serum aspartate aminotransferase, and low inverse correlations with serum albumin and the coagulation factors. Serum albumin and coagulation factors, etc. reflect the function of the hepatocytes but may also indirectly reflect the degree of fibrosis, since perisinusoidal capillarization creates a diffusion barrier which limits the export of proteins synthesised by hepatocytes. The highest correlation coefficients were found between serum YKL-40 and serum hyaluronan and serum PIIINP. Hyaluronan is a polysaccharide found in virtually all connective tissues (24) and in liver fibrosis hyaluronan is a component of the extracellular matrix. PIIINP is the N-terminal cleavage product of the conversion of procollagen III into collagen III that is a component of the extracellular matrix in liver fibrosis. In the liver both PIIINP and hyaluronan are synthesised by the hepatic stellate cells and metabolised in the endothelial liver cells (24–27). In accordance with other studies we found increased serum levels of PIIINP and hyaluronan in most patients with cirrhosis (28–41). Serum hyaluronan was normal in patients with fatty liver and non-cirrhotic fibrosis, whereas serum PIIINP levels were increased in 45% and 79% of these patients, respectively. Multiple regression analysis showed that serum YKL-40, PIIINP and hyaluronan contributed with independent information of the degree of liver fibrosis.

Our results indicate that serum YKL-40 provides information on fibrosis and fibrogenesis that is different from that of serum PIIINP and serum hyaluronan. Serum YKL-40 is significantly elevated in the subset of alcoholic cirrhotic patients who also have alcoholic hepatitis, while serum PIIINP and hyaluronan are not. Furthermore, the serum YKL-40 concentration appears to be the best of the three serological markers in discriminating between patients with slight fibrosis and patients with no fibrosis. This indicates that serum YKL-40 may be a better marker for early stages of fibrosis and ongoing fibrogenesis. We have earlier reported that YKL-40 is released from the hepato-splanchnic system (17). This is in contrast to serum PIIINP and hyaluronan where a hepato-splanchnic extraction is found both in patients with normal liver function and in patients with alcoholic liver disease (29,38). The high serum PIIINP and hyaluronan levels observed in patients with cirrhosis may therefore arise in part from increased synthesis at sites of fibrosis and in part from decreased catabolism secondary to liver dysfunction and decreased function of the endothelial sinusoidal cell.

The cellular sources of YKL-40 in the liver are unknown. We think that hepatic stellate cells are possibly a source of secreted YKL-40 during active hepatic fibrogenesis. These cells play a central role in liver fibrosis (42–44) and are found in the space of Disse in close contact with hepatocytes and endothelial cells.
Most of the extracellular matrix proteins (collagens, non-collagenous structural glycoproteins, glycosaminoglycans, proteoglycans, and elastin) and the degradative metalloproteinases are synthesised by the hepatic stellate cells during the development of liver fibrosis (3,42–44). Furthermore, the hepatic stellate cells are functionally and morphologically related to cells (42–44) that have been shown to secrete YKL-40, like smooth muscle cells (12) and myofibroblasts (Johansen JS, personal observation). In some instances YKL-40 may also be secreted by macrophages at a late stage of differentiation (7,13,15) and by activated neutrophils (16). We found intense expression of the YKL-40 antigen in areas with liver necrosis and alcoholic hepatitis in particular early fibrosis.

The biological function of YKL-40 is unknown. The protein is produced in a wide variety of cell types and in particular from cells located in tissues with increased remodelling/degradation or inflammation of the extracellular matrix (4,5,7,9,11,12,15,16). Due to its chitin- and heparin-binding properties (12,13), YKL-40 may have a function in adhesion of cells to extracellular matrix proteins and it may have a role in tissue remodelling and cell migration. Chitin is not found in mammals, and no studies have been able to demonstrate chitinase or hyaluronidase activity of YKL-40 (5,6,13). Recently, a vertebrate synthase has been identified (45–47) which is supposed to create short chitin stretches that are essential to initiate hyaluronan synthesis (46).

It is possible that YKL 40 recognise hyaluronan precursor as a substrate and interfere with its synthesis, which could affect local hyaluronan levels. One physiological ligand for the heparin binding site in YKL-40 could be perlecan, which is the major heparan sulphate proteoglycan of basement membranes and is also expressed in the extracellular matrix (48). Perlecan is known to be involved in cell migration and proliferation and in adhesion of cells to extracellular matrix molecules. Studies have shown that perlecan can store, activate or inactivate growth factors and cytokines which play important roles in fibrogenesis (48). Human hepatic stellate cells and endothelial cells express perlecan, whereas hepatocytes and Kupffer cells do not (49–51). Immunohistochemical studies have demonstrated staining for perlecan in normal human liver in the sinusoids and the blood vessels of the portal tracts (49,50). In damaged rat liver with cirrhosis, positive perlecan staining was found in the perisinusoidal area, in the fibrotic septa and in necrotic areas (51), i.e. the pattern of positive staining for YKL-40 in cirrhotic liver is found in the same areas as perlecan.

In summary, the results of the present study indicate that the serum concentration of YKL-40 may provide new information of the amount of liver fibrosis and ongoing fibrogenesis in patients with liver diseases. Future longitudinal studies should evaluate if serum YKL-40 in combination with other serological markers, like serum PIIINP, serum hyaluronan and the metalloproteinases, can be of value in the detection of (alcoholic) patients who have a high risk for progression from fatty liver to more severe liver damage, in particular early fibrosis.

Acknowledgements
The expert technical assistance of Margit Beck and Vi-beke Karlsen, Department of Pathology, Hvidovre Hospital, Denmark and Birgitte Olsen, Institute of Medical Anatomy Section A, The Panum Institute, University of Copenhagen, Denmark is gratefully acknowledged. We also appreciate helpful support from Ilonne Hansen, Department of Clinical Physiology and Nuclear Medicine, Hvidovre Hospital, Denmark in the statistical calculations and the preparation of the figures, and from Lene Theil Skovgaard, Department of Biostatistics, University of Copenhagen, Denmark, in the statistical analysis.

The study was supported by grants from the “Dagmar Marshalls Foundation”, the “Danish Foundation for the Advancement of Medical Science”, the “Danish Hospital Foundation for Medical Research, Region of Copenhagen, The Faroe Islands and Greenland”, “Michaelsen Fonden” and “Overlege Johan Boserup og Lise Boserups Legat”.

References
8. Reijman JJ, Hurley WL. Isolation and characterization of a novel...
Serum YKL-40 and liver fibrosis

Smedsrod B. Aminoterminal propeptide of type III procollagen is cleaved from the circulation by receptor-mediated endocytosis in liver endothelial cells. Collagen Rel Res 1988; 8: 375-88.

