Nutrient Interactions and Toxicity

The Amino Bisphosphonate Ibandronate Prevents Vitamin D Toxicity and Inhibits Vitamin D-Induced Calcification of Arteries, Cartilage, Lungs and Kidneys in Rats

Paul A. Price,2 Jessica R. Buckley and Matthew K. Williamson

Division of Biology, University of California, San Diego, La Jolla, CA 92093-0368

ABSTRACT Experiments were carried out to determine whether the doses of the amino bisphosphonate ibandronate that inhibit bone resorption inhibit soft tissue calcification and death in rats treated with a toxic dose of vitamin D. These studies were prompted by the recent discovery that ibandronate doses that inhibit bone resorption potently inhibit artery calcification induced by treatment with the vitamin K antagonist warfarin. All 16 rats treated with the toxic dose of vitamin D (12.5 mg cholecalciferol · kg−1) died by d 6 after the first vitamin D injection (median survival: 4.5 d), whereas the 12 rats treated with vitamin D plus ibandronate (0.25 mg · kg−1 · d−1) were alive and in good health at d 10. Rats treated with vitamin D alone and examined at d 4 had extensive Alizarin red staining for calcification in the aorta, the carotid, hepatic, mesenteric, renal and femoral arteries, kidneys and lungs, whereas rats treated with vitamin D plus ibandronate had no evidence for calcification at any of these tissues when examined at d 7 and 10. Ibandronate treatment also inhibited the dramatic increase in the levels of calcium and phosphate seen in the abdominal aorta, kidneys, lungs and trachea of the vitamin D-treated rats (P < 0.001). Serum calcium levels were, however, not different in rats treated with vitamin D alone (3.4 ± 0.2 mmol · L−1) and in rats treated with vitamin D plus ibandronate (3.5 ± 0.2 mmol · L−1). Treatment with vitamin D alone increased levels of matrix Gla protein, an inhibitor of soft tissue calcification, in the arteries, kidneys, lungs and trachea by 10- to 100-fold, and ibandronate treatment prevented this increase. The importance of these studies in the rat model is that they identify a class of drugs in current clinical use that can be used to treat patients with vitamin D toxicity and that they identify the dose of the drug that is predicted to be effective, namely the dose that inhibits bone resorption. Because there is no other known treatment for vitamin D toxicity, there would seem to be good reason to try bisphosphonates such as ibandronate in future studies aimed at treating patients who have been exposed to toxic levels of vitamin D. J. Nutr. 131: 2910–2915, 2001.

KEY WORDS: • rats • warfarin • vitamin K • vitamin D • calcification • matrix Gla protein

High doses of vitamin D have been known for many years to be toxic to humans, rats and other animals (1–3). In humans, manifestations of vitamin D toxicity include hypercalcemia, hypercalcuria, nausea, anorexia, lethargy, mental disturbances, ectopic soft tissue calcification, including vascular calcification and nephrocalcinosis, and renal failure (1–3). In the years immediately after the introduction of vitamin D into clinical use, vitamin D was used to treat diseases that are not associated with hypercalcemia, including arthritis, gout and various disorders in children, and treatment often led to vitamin D intoxication (2). Despite the current appreciation of the potential toxicity of vitamin D, however, it is still used unnecessarily and cases of vitamin D intoxication still occur (4). Vitamin D intoxication can also occur even when it is used to treat hypocalcemic disorders (1). In rats, vitamin D intoxication causes hypercalcemia, artery and renal calcification, anorexia, lethargy and death (5–7). Although the exact cause of death has not been established in rats given toxic doses of vitamin D, it is possible that the ectopic calcification of arteries, kidneys or other soft tissue structures may play a critical role in morbidity.

In a previous study we found that the amino bisphosphonates alendronate and ibandronate inhibit warfarin-induced artery calcification in rats (8). The present experiments were carried out to determine whether the more potent of these bisphosphonates, ibandronate, would inhibit calcification of soft tissues and death in rats that have been given toxic doses of vitamin D. A second goal of these studies was to investigate the effect of vitamin D-induced soft tissue calcification on the level of the vitamin K-dependent matrix Gla protein (MGP), a proven inhibitor of soft tissue calcifications. A deficiency in the activity of MGP has been shown to cause calcification of arteries and cartilage in rats treated with the vitamin K antagonist warfarin (9,10), in the MGP gene knockout mouse (11) and in Keutel syndrome in humans (12).

1 This work was supported in part by Grant HL58090 from the National Heart, Lung and Blood Institute of the National Institutes of Health.
2 To whom correspondence should be addressed. E-mail: pprice@ucsd.edu
3 Abbreviation used: MGP, matrix Gla protein.
MATERIALS AND METHODS

Materials. Cholecalciferol (vitamin D) was purchased from Sigma (St. Louis, MO) and ibandronate (Bonodronat; Boehringer Mannheim, Indianapolis, IN) was purchased from Idis World Medicines (Surrey, United Kingdom). Ibandronate was diluted with 0.15 mol L⁻¹ NaCl and stored at 4°C. Stock solutions of vitamin D were prepared fresh for each 3-d subcutaneous injection cycle at a concentration of 4.3 mmol/L in 7% emulphor (alkamuls EL-620; Rodia, Crabury, NJ) and then placed in foil wrapped containers and stored at 4°C, as described previously (10). Simonsen albino rats (Sprague-Dawley derived) were purchased from Simonsen Laboratories (Gilroy, CA).

Maintenance of rats. Male Sprague-Dawley rats consumed ad libitum rodent diet 5001 (Purina Mills, St. Louis, MO), a diet that is 0.67% phosphorus and 0.95% calcium by weight. This diet contains 500 μg/kg of phylloquinone and has no added menadione. In all experiments, rats were killed by exsanguination while under ether anesthesia. All animal experiments were approved by the University of California, San Diego Animal Subjects Committee.

Treatment of rats. In the survival study (Fig. 1), 28 seven-week-old male rats were given subcutaneous injections of 12.5 mg of vitamin D · kg body⁻¹ at t = 0, 24, and 48 h. Twelve of these rats also received subcutaneous injections of ibandronate at a dose of 0.25 mg · kg⁻¹ · d⁻¹ beginning 4 d before the first vitamin D injection and continuing until the rats were killed. The number of rats surviving was determined at 12-h intervals; as noted in Figure 1, two of the vitamin D-treated rats were judged to be close to death at 120 h and, therefore, were anesthetized and killed. For histological analysis of tissues, rats were given the same treatments of vitamin D and of vitamin D plus ibandronate and were killed at 96 h (vitamin D only) and at 96 or 168 h (vitamin D plus ibandronate). For chemical analysis of tissue levels of calcium, phosphate and MGP, rats were given the same treatments of vitamin D and of vitamin D plus ibandronate and were killed at 96 h.

Methods. For measurement of mineral and MGP accumulation, the appropriate tissues were removed within 30 min of death and immediately frozen at −20°C until analysis. For each animal, the abdominal aorta section beginning 1 cm above the renal branch and ending at the femoral bifurcation, and the segment of trachea obtained by cutting between tracheal rings 12 and 13 (counting from the larynx) and rings 22 and 23, were placed into different 2-ml epitubes and 1 mL of 150 mmol · L⁻¹ HCl was added to each tube. The lung and one kidney from each rat were placed into separate 50-mL test tubes and 20 mL of 150 mmol/L HCl was added to each tube. Each tube was closed securely and mixed end over end for 24 h. Calcium levels in the serum and in the acid extract of tissues were determined colorimetrically, using cresolphthalein complexone (Sigma) and phosphate levels in serum and in the acid extract of tissues were determined colorimetrically as described (13). The MGP levels in serum and in the acid extract of tissues were determined by radioimmunoassay as described previously (14). Serum samples were analyzed to determine the level of cross-linked N-telopeptides (OSTEOMARK NTx) by Ostex (Seattle, WA) using a specific enzyme-linked immunosorbent assay (15).

For histological analysis of mineral accumulation, the appropriate tissues were removed within 30 min of death and fixed in formalin for at least 24 h at room temperature. Sectioning and histological staining (hematoxylin and eosin and von Kossa) of formalin fixed tissues were carried out by Biomedical Testing Services (San Diego, CA). Alizarin red staining of formalin fixed tissues was carried out as described (16,17).

Statistical analysis. All data are presented as means ± SD. Differences between groups were analyzed by the Student’s t test. Differences with P < 0.05 were accepted as significant.

RESULTS

The first experiment was carried out to determine the effects of ibandronate on the mortality of rats given 12.5 mg · kg⁻¹ of cholecalciferol (vitamin D) for 3 consecutive days, a dose that has been previously shown to be toxic (5–7). All 16 of the rats treated with vitamin D alone died by 144 h (Fig. 1). The symptoms before death included: anorexia and lethargy beginning by 48 h and a dramatic weight loss between 48 h and death, with a 21% weight loss between 48 and 96 h alone. In contrast, the 12 rats treated with vitamin D plus ibandronate at a dose of 0.25 mg · kg⁻¹ · d⁻¹ were healthy at 168 h with no signs of anorexia, lethargy or weight loss. Six of the rats treated with vitamin D plus ibandronate were killed at this time and the remaining 6 rats continued to receive ibandronate until 240 h, when they were killed. These rats were judged to be healthy at 240 h by the criteria of normal intake of food and water and normal levels of activity. The serum chemistry values measured at 240 h were also normal except for serum calcium, which remained ~40% above normal levels.

Additional experiments were conducted to identify the tissues that calcify in rats treated with toxic doses of vitamin D and to determine the effects of ibandronate on each calcification. Figure 2 shows a typical example of the level of Alizarin red staining seen in the arteries from the 15 rats treated for 4 d with vitamin D alone, and an example of the absence of Alizarin red staining seen in the arteries from the 7 rats treated for 4 or 7 d with vitamin D plus ibandronate. Calcification in the vitamin D-treated rats was more pronounced in the smaller branch arteries, such as the mesenteric, hepatic and renal arteries, than it was in the aorta itself. Microscopic examination of von Kossa stained sections revealed massive calcification of the elastic lamellae in the media of arteries from the vitamin D-treated rats and the absence of staining in the arteries from rats treated with vitamin D plus ibandronate (not shown).

Figure 3 shows the typical Alizarin red staining seen in the lungs of rats treated for 4 d with vitamin D alone and an example of the absence of Alizarin red staining seen in the lungs from rats treated for 4 or 7 d with vitamin D plus ibandronate (Fig. 3). Microscopic examination of von Kossa stained
sections showed that calcification is associated with the alveolar wall and pulmonary arteries (not shown). As can also be seen in Figure 3, vitamin D treatment increased calcification of tracheal ring cartilage, and ibandronate treatment reduced this increase. Figure 4 shows the typical level of von Kossa staining seen in the elastic lamellae of aortic heart valves from rats treated with vitamin D alone and an example of the absence of von Kossa staining seen in the aortic heart valves of rats treated with vitamin D plus ibandronate.

Sections of arteries, kidneys and lungs were also stained with hematoxylin and eosin and examined. There was no evidence of cell necrosis or degeneration in any tissue from the rats treated with vitamin D plus ibandronate, and the microscopic appearance of these tissues was indistinguishable from the appearance of corresponding tissues from age-matched, untreated control rats.

Tissues were analyzed for calcium and phosphate to obtain a quantitative measure of the effects of treatment with vitamin D and with vitamin D plus ibandronate on the accumulation of calcium and phosphate in the tissues. Treatment with vitamin D alone significantly increased tissue levels of calcium and phosphate in the aorta, lung, kidney and trachea, whereas tissue levels of calcium and phosphate in the corresponding tissues from the rats treated with vitamin D plus ibandronate were at control levels (Table 1). The average molar ratio of the increase in calcium to the increase in phosphate found in the aorta, lung, kidney and trachea of rats treated with vitamin D alone was 1.54 ± 0.12. Vitamin D treatment significantly increased serum calcium levels at d 4 compared with control rats (Table 2), in agreement with earlier studies (10). Ibandronate treatment did not reduce the levels of serum calcium at d 4 compared with rats treated with vitamin D alone (Table 2), but did produce a significant 23% reduction in the level of serum phosphate. In the 6 rats treated with vitamin D plus ibandronate for 10 d, serum calcium remained high (3.5 ± 0.1 mmol L⁻¹) and serum phosphate remained low (2.3 ± 0.2 mmol L⁻¹). Treatment with toxic levels of vitamin D increased serum levels of cross-linked N-teleopeptides, a marker for bone resorption activity, by 110% (Table 2). Serum levels of cross-linked N-teleopeptides were at control values in the
rats treated with vitamin D plus ibandronate, which shows that ibandronate treatment completely inhibited the increased level of bone resorption activity produced by vitamin D treatment. Because ibandronate did not reduce the hypercalcemia due to vitamin D intoxication, the vitamin D-induced hypercalcemia observed in these rats cannot be due to accelerated bone resorption.

Additional analyses were carried out to determine whether the soft tissue calcifications induced by toxic doses of vitamin D are associated with increased levels of MGP, a potent vitamin K-dependent inhibitor of soft tissue calcifications. Treatment with toxic doses of vitamin D increased serum levels of MGP by twofold and increased tissue levels of MGP from sixfold (cartilage) to over 100-fold (lung; Table 3).

Treatment with ibandronate reduced serum levels of MGP to control levels and reduced tissue levels of MGP from 64% (cartilage) to 93% (lung) below the levels found in rats treated with vitamin D alone. Lung levels of MGP in the ibandronate-treated rats remained significantly above the MGP levels in control rats, however.

DISCUSSION

To our knowledge, this is the first study to identify a drug that prevents soft tissue calcification and death in experimental animals given a toxic dose of vitamin D. This discovery raises the possibility that the drug identified in this study,

TABLE 1

<table>
<thead>
<tr>
<th>Tissue</th>
<th>Vitamin D only</th>
<th>Vitamin D + ibandronate</th>
<th>Age-matched control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abdominal aorta</td>
<td>4.01 ± 0.59</td>
<td>0.31 ± 0.033</td>
<td>0.29 ± 0.013</td>
</tr>
<tr>
<td>Calcium</td>
<td>2.43 ± 0.59</td>
<td>0.03 ± 0.003</td>
<td>0.03 ± 0.003</td>
</tr>
<tr>
<td>Phosphate</td>
<td>91.0 ± 12.7</td>
<td>8.2 ± 1.13</td>
<td>5.2 ± 2.33</td>
</tr>
<tr>
<td>Lung</td>
<td>73.8 ± 7.7</td>
<td>13.4 ± 0.53</td>
<td>13.9 ± 0.63</td>
</tr>
<tr>
<td>Calcium</td>
<td>91.0 ± 12.7</td>
<td>8.2 ± 1.13</td>
<td>5.2 ± 2.33</td>
</tr>
<tr>
<td>Phosphate</td>
<td>49.8 ± 5.8</td>
<td>23.6 ± 1.03</td>
<td>23.3 ± 1.53</td>
</tr>
<tr>
<td>Trachea</td>
<td>4.12 ± 0.38</td>
<td>1.62 ± 0.543</td>
<td>1.04 ± 0.543</td>
</tr>
<tr>
<td>Calcium</td>
<td>2.86 ± 0.12</td>
<td>1.16 ± 0.333</td>
<td>0.79 ± 0.413</td>
</tr>
<tr>
<td>Phosphate</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 Results are means ± so.
2 Seven-week-old male rats received subcutaneous injections of 12.5 mg of vitamin D·kg body−1 at t = 0, 24 and 48 h. A subset of these rats were also injected with ibandronate at a dose of 0.25 mg·kg−1·d−1 beginning 4 d before the first vitamin D injection. Rats were killed 96 h after the first vitamin D injection, and the indicated tissues were extracted with acid to dissolve mineral. Each acid extract was then analyzed for calcium and phosphate.
3 P < 0.001 when compared with vitamin D only.

TABLE 2

<table>
<thead>
<tr>
<th></th>
<th>Vitamin D only</th>
<th>Vitamin D + ibandronate</th>
<th>Age-matched control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcium, mmol·L−1</td>
<td>3.4 ± 0.2a (6)</td>
<td>3.5 ± 0.2a (6)</td>
<td>2.6 ± 0.1 (4)</td>
</tr>
<tr>
<td>Phosphate, mmol·L−1</td>
<td>3.1 ± 0.6 (6)</td>
<td>2.3 ± 0.1a (6)</td>
<td>3.0 ± 0.2 (4)</td>
</tr>
</tbody>
</table>

1 Results are means ± so (n).
2 Significantly different from control, P < 0.001.

FIGURE 4 Effect of ibandronate on the calcification of aortic heart valves in rats treated with a toxic dose of vitamin D. In the experiment described in the legend of Figure 2, the hearts were removed and fixed in formalin. Sections of each heart were obtained that included the aortic heart valve, and each section was stained by the von Kossa procedure, which stains calcifications brown, and by the hematoxylin & eosin procedure.
control; b doses that inhibit bone resorption also supports this hypothesis

ibandronate inhibit warfarin-induced artery calcification at

of bone calcium and the calcification of arteries (20). Our

inhibits osteoclast activity, causes both the expected rapid loss

of matrix Gla protein (MGP) in serum and in soft
tissues of rats\(^1\,2\)

\[
\begin{array}{llll}
\text{n} & \text{Vitamin D only} & \text{Vitamin D + ibandronate} & \text{Age-
matched control} \\
\hline
\text{Serum, nmol \cdot L}^{-1} & 4 & 85.0 \pm 10.0^{a,b} & 29.6 \pm 2.5 & 27.6 \pm 1.7 \\
\text{Abdominal aorta, pmol} & 3 & 109.4 \pm 6.4^{a,b} & 10.5 \pm 0.7 & 6.1 \pm 1.6 \\
\text{Lung, pmol} & 3 & 1650.0 \pm 33.2^{a,b} & 110.0 \pm 2.7a & 15.3 \pm 1.8 \\
\text{Kidney, pmol} & 4 & 1350 \pm 550 & <80 & <80 \\
\text{Trachea, pmol} & 3 & 306.7 \pm 44.4^{a,c} & 112.0 \pm 78.7 & 43.0 \pm 8.0 \\
\end{array}
\]

\(^1\) Results are means \pm sd, \(^a\) \(P < 0.001\) compared with age-matched control; \(^b\) \(P < 0.001\) compared with D + ibandronate; \(^c\) \(P < 0.025\) compared with D + ibandronate.

From bone is inhibited by inhibitors of bone resorption (per-

1 dose of vitamin D act synergistically in
causing increased calcification of soft tissues and death (10),

and by the observation that in rats treated with the same doses

of warfarin and vitamin D, the amino bisphosphonate alen-
dronate inhibits both the calcification of soft tissues (8) and
death (personal observations). To better understand how soft

tissue calcification could affect normal physiological processes,

we investigated the possible calcification of a variety of tissues

in rats given toxic doses of vitamin D. In agreement with

earlier studies (6,18,19), we found that toxic doses of vitamin D

induced extensive calcification of arteries and kidneys, and

for the first time, we report that toxic doses of vitamin D also

caused extensive calcification of lungs, heart valves and tra-

cheal ring cartilage. In each of these tissues, calcification was

reduced markedly or prevented by treatment with iban-
dronate. These results document the diversity of tissues that

calciﬁy in rats given toxic doses of vitamin D as well as the

ability of ibandronate to inhibit each calcification process.

The number of tissues that calciﬁy and the extensive degree of
each calcification are consistent with the hypothesis that the

cumulative physiological effect of soft tissue calcification

causes death and with the hypothesis that ibandronate pre-

vents death by preventing soft tissue calcification.

The fact that ibandronate inhibited calcification of arteries,

heart valves, lungs, kidneys and cartilage is intriguing because it

suggests that vitamin D-induced calcification of these diverse
tissues may proceed by a common biochemical mechanism.

We previously hypothesized that artery calcification is linked
to bone resorption to account for the effects of vitamin D and
growth status on warfarin-induced artery calcification (10).

This hypothesis is supported by studies that show that defi-
ciency in osteoprotegerin, a secreted protein that normally
inhibits osteoclast activity, causes both the expected rapid loss
of bone calcium and the calcification of arteries (20). Our
recent discovery that the bisphosphonates alendronate and
ibandronate inhibit warfarin-induced artery calcification at
doses that inhibit bone resorption also supports this hypothesis

(8). We speculate that the demonstrated ability of toxic doses of
vitamin D to strongly stimulate bone resorption (Table 2) ac-
counts for the calcification of the diverse set of soft tissues
observed in the present studies, and that bone resorption,
therefore, is linked to the calcification of a wide variety of
tissues in vitamin D-treated rats. The ability of ibandronate
to inhibit each of these soft tissue calcifications supports this
hypothesis, because ibandronate completely inhibited the in-
creased level of bone resorption activity produced by vitamin
D treatment (Table 2).

The nature of the biochemical mechanism that is respon-
sible for the putative linkage between bone resorption and soft

tissue calcification in vitamin D-treated rats is presently un-
clear. One possibility is that soft tissue calcification could be a
direct physicochemical consequence of the effect of the ob-

served vitamin D-induced hypercalcemia on the nucleation

and growth of the mineral phase in soft tissues. This hypo-

thesis is not, however, supported by the failure of ibandronate
to normalize serum calcium levels in vitamin D-treated rats

(Table 2). Another possibility is that soft tissue calcification is

promoted by crystal nuclei generated at sites of bone resor-

tion, which travel in blood and occasionally lodge in soft tissue

structures. This hypothesis is supported by the observa-
ton that, under some circumstances, a complex of calcium,
phosphate and MGP is released from bone and can be detected in
blood, and by the observation that the release of this complex
from bone is inhibited by inhibitors of bone resorption (per-

sonal observations).

The present studies show that soft tissue calcification dra-

matically increases tissue levels of MGP. We believe that the
MGP that accumulates in these tissues is bound directly to the
tissue calcifications and that the accumulation of MGP is,

therefore, a direct reflection of the amount of calcification

within the tissue. This hypothesis is supported by the obser-
vation that ibandronate treatment reduces both the calcifica-
tion of soft tissues and the accumulation of MGP in these

tissues. It is probable that the MGP that accumulates at sites of
ectopic calcifications in vitamin D-treated rats actually plays a
direct role in retarding the further growth of the soft tissue

calcification, because previous studies have shown that the
rate of ectopic calcification is accelerated when vitamin

D-treated rats are treated concurrently with warfarin (10). It

should be noted that previous studies have also shown that the
direct association of MGP with calcium phosphate crystallites is
required for MGP to inhibit the in vitro calcification of human
aortic elastin in human plasma (21). Because the sites of

prominent soft tissue calcification in vitamin D-treated rats are
also the tissues with the highest rate of MGP expression in

rats (22,23), it seems likely that the increased levels of MGP
found at sites of ectopic calcification arise from local synthesis

of the protein within the tissue.

There are clinical implications of the present findings that
should be noted. Bisphosphonates are currently used to inhibit
bone resorption in patients with osteoporosis (24,25). We

previously showed that the same bisphosphonate doses that
inhibit bone resorption have the unexpected ability to inhibit
warfarin-induced artery calcification (8). In the present study

we have further shown that doses of the bisphosphonate iban-
dronate, which in previous studies inhibited bone resorption

and warfarin-induced artery calcification, also inhibit the soft

tissue calcification induced by toxic doses of vitamin D and
prevent death due to vitamin D intoxication. This discovery

in the rat model, therefore, identifies a class of drugs with cur-
current clinical use that can be used to treat patients with vitamin D
toxicity and identifies the dose of the drug that is predicted to
be effective, namely the dose that inhibits bone resorption.
Because there is no other known treatment for vitamin D toxicity, there would seem to be little reason not to try bisphosphonates such as ibandronate in future studies aimed at treating patients who have been exposed to toxic levels of vitamin D.

LITERATURE CITED