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Drosophila mojavensis, a cactophilic fruit fly endem-
ic to the Sonoran Desert of North America (Fig. 1),
has become a popular model system for studies of spe-
ciation. Mettler (1963) originally divided the species
into two geographic host races: race A breeds in ne-
crotic barrel cactus (Ferrocactus acanthodes) in south-
ern California; race B inhabits Baja California where
it breeds in agria cactus (Stenocereus gumosis), Sonora

and southern Arizona where organ pipe cactus (S. thur-
beri) is the primary host plant. Flies of race A are larger
and more yellow than those of race B (Mettler, 1963).
These two races also show distinct differences in chro-
mosomal inversions and allozyme frequencies (Zouros,
1974). Zouros (1974) further subdivided race B into
subrace B, denoting populations from the mainland,
and subrace B,, for the populations in the Baja Pen-
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insula, on the basis of cytological (Johnson, 1973) and
genetic (Zouros, 1974) differentiation.

Flies from the two races and subraces may be crossed
to produce fertile offspring (Mettler, 1963; Zouros, 1974)
indicating the lack of postzygotic isolation. However,
Zouros and d’Entremont (1980) discovered significant
sexual isolation between subrace B, and B;; such that
females from Sonora show reduced matings with males
of Baja California populations. The observed behav-
ioral isolation has subsequently been shown to be un-
der genetic control (Koepfer, 1987a, 1987b; Krebs,
1990) and the responsible courtship behaviors iden-
tified (Krebs and Markow, 1989).

Drosophila mojavensis was later collected from prickly
pear cactus (Opuntia demissa) on Santa Catalina Is-
land, California (Heed, 1982) revealing the existence
of still another geographically isolated (SCI, Fig. 1) host
race. Though the two D. mojavensis populations from
California are geographically separate and utilize very
different host plants from the populations in Baja and
Sonora, the possibility of sexual isolation between them
and other geographic host races has not yet been ex-
amined. In the present study testing for behavioral
isolation was extended to include strains of the other
geographic host races of D. mojavensis; one from Santa
Catalina Island and one from the Anza Borrego Desert
of California. Based upon the degree of genetic differ-
entiation reported earlier for flies from southern Cal-
ifornia significantly greater isolation was expected
between race A flies (California) and race B (Baja or
Sonora) than within race B.

MATERIALS AND METHODS

Strains and Rearing Conditions.—Strains of Dro-
sophila mojavensis (Fig. 1) were obtained from the Uni-
versity of Arizona (with A stock numbers), or were
collected by the author. For ease of reference, strains
are denoted by abbreviations for geographic area: the
Sonora desert mainland (SON1, SON2, etc.), the Baja
Peninsula (BAJA1, BAJA2, etc.), Santa Catalina Island
(SCI), and southern California (CAL). One set of sexual
isolation experiments was conducted in 1981 and 1982,
employing the same Baja and Sonora strains utilized
in previous experiments (Markow, 1981; Markow et
al., 1983): BAJA1 (La Paz, A791), BAJA2 (Santa Rosa-
lia, A800), BAJA3 (Catevena, A761), SON1 (San Car-
los, A798), SON2 (Santa Rosa Mountains, AZ), a strain
from Santa Catalina Island, SCI (A826) and a strain
from the Anza Borrego Desert, California, CAL (A753).
Strains utilized in the second set of experiments, con-
ducted between 1987 and 1989, include SON3 (De-
semboque, Sonora), SON4 (Las Bocas, Sinaloa A891),
BAJA4 (San Lucas A920), and BAJAS5 (Punta Prieta
A859). The SON3 strain was collected in the small
area where agria cactus occurs in Sonora and though
agria appears to be preferred over organ pipe, those
flies show no genetic differences from the flies using
organ pipe nearby. Thus, they serve as a control for
the influences of host plant in the following behavioral
isolation tests.

All flies were reared in half-pint milk bottles con-
taining standard cornmeal-molasses-yeast medium with
buffered propionic acid and seeded with live yeast.
Virgin males and females were separated under light
ether anesthesia 1 to 6 hours after eclosion and stored
in 8-dram vials with live yeast, with five flies per vial.
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agria Stenocereus gummosis
organ pipe Stenocereus thurberi

barrel cactus Ferrocactus acanthodes

B prickly pear Opuntia demissa

Fig. 1. Collection localities for strains of the geo-
graphic host races used in this report. Host plant use
distributions are presented according to the key.

The flies were kept in a. 13:11 hour light:dark cycle
with temperatures at 26 to 27°C day and 20 to 21°C
night.

Measuring Sexual Isolation between D. mojavensis
Strains from Different Localities.—Sexual isolation was
tested as in Markow (1981) by placing 10 pairs of sex-
ually mature virgin flies from each of two geographic
strains in a Plexiglas observation chamber for one hour
and scoring the strain identities of the males and fe-
males mating. Flies had been colored with fluorescent
dust to distinguish strains, and the colors were alter-
nated between each of the four replications to eliminate
possible marking effects. The joint isolation index (1)
and female isolation indices (/,, I,) from each strain
were calculated according to the following formulae:

I=[(n, + np) — (n; + ny)lVn

I, = (n, — n)/(ny, + nypy)

I, = (ny — ny)/(ny + ny)
where 7n,, is the number of matings between females
from Strain 1 and males from Strain 1, »,, is the num-
ber of matings between females of Strain 1 and males

of Strain 2, etc., and # is the total number of matings
(Stalker, 1942). The standard error of these indices is

1-P2
given by SE = \ / — (Malagolowkin-Cohen et al.,

1965).
REsULTS

Sexual Isolation between Geographic Host Races.—
Sexual isolation indices derived from the first set pooled
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Isolation indices for Drosophila mojavensis from a and d) southern California with flies from Baja

and Sonora, b and e) Santa Catalina with flies from Baja, Sonora, and southern California, ¢ and f) Baja with
flies from Sonora. Observations a, b, and ¢ were made in 1981 and 1982 while observations d, e, and f were

made in 1989.

Pl P2 I(SE) I (SE) I (SE)
1A.

a. CAL BAJA1 0.04 (0.20) 0.09 (0.28) 0.00 (0.28)
CAL BAJA2 0.18 (0.17) —0.23 (0.24) 0.57 (0.19)*
CAL BAJA3 0.33 (0.13)* 0.19 (0.19) 0.53 (0.16)*
CAL SON1 0.05 (0.11) —0.14 (0.16) 0.27 (0.16)
CAL SON2 0.01 (0.16) —0.02 (0.13) 0.03 (0.13)

b. SCI BAJAI 0.00 (0.14) —0.41 (0.15)* 0.44 (0.16)*
SCI BAJA2 ~0.14 (0.14) -0.15 (0.21) —0.27 (0.18)
SCI BAJA3 0.16 (0.14) 0.44 (0.18)* ~0.12(0.19)
SCI SON1 0.10 (0.14) 0.11 (0.19) 0.36 (0.19)
SCI SON2 0.02 (0.13) ©0.08(0.19) -0.10 (0.18)
SCI CAL 0.15(0.14) 0.68 (0.14)* —0.36 (0.18)*

¢. BAJAI SON1 0.23 (0.08)** 0.13 (0.09) 0.30 (0.10)**
BAJAI SON2 0.15 (0.07)* 0.08 (0.08) 0.81 (0.11)**
BAJA2 SON1 0.19 (0.09)* 0.16 (0.12) 0.69 (0.08)**
BAJA2 SON2 0.21 (0.11) —0.09 (0.06) 0.77 (0.10y**
BAJA3 SON1 0.31 (0.07)** 0.21 (0.07)** 0.33 (0.10)**
BAJA3 SON2 0.25 (0.09)* 0.19 (0.08)* 0.59 (0.23)**

1B.

d. CAL BAJA4 0.09 (0.18) —0.12 (0.17) 0.16 (0.20)
CAL BAJAS 0.18 (0.14) —0.03 (0.09) 0.14 (0.08)
CAL SON3 0.07 (0.10) —0.11(0.11) 0.26 (0.15)
CAL SON4 0.24 (0.16) 0.19 (0.09)* 0.40 (0.12)**

e. SCI BAJA4 0.01 (0.14) —0.12(0.11) 0.19 (0.15)
SCI BAJAS 0.20 (0.19) —0.11 (0.09) 0.26 (0.18)
SCI SON3 0.18 (0.18) 0.04 (0.15) 0.37 (0.15)*
SCI SON4 0.10 (0.10) 0.11(0.15) 0.22 (0.11)*

f. BAJA4 SON3 0.16 (0.08)* 0.12 (0.16) 0.54 (0.13)**
BAJA4 SON4 0.20 (0.10)* 0.09 (0.14) 0.60 (0.19)**
BAJAS SON3 0.22 (0.07)** 0.12 (0.08) 0.71 (0.20)**
BAJAS SON4 0.16 (0.07)* ~0.10 (0.06) 0.69 (0.22)**
BAJA4 BAJAS 0.09 (0.10) —0.02 (0.04) 0.07 (0.13)
SON3 SON4 0.20 (0.19) 0.12 (0.16) 0.14 (0.19)

* P < 0.05.

** P <0.01.

of behavioral isolation tests (1981-1982) are reported
in Table la. Only once was the joint isolation index
significantly different from zero, between the CAL strain
and the northern-most Baja strain, BAJA3. The degree
of assortative mating or isolation attributable to fe-
males of each strain is reflected- by I, and I, values.
Males from the CAL strain had reduced mating success
with females from other localities, and positive as-
sortative mating occurred in tests with the Baja strains,
BAJA2 and BAJA3. While no significant joint isolation
indices were found in tests involving SCI flies, strong
positive assortative mating was found for SCI females
paired with BAJA3 and CAL males. Females from
BAJAI1 and SCI showed a significant excess of matings
with BAJA1 males although no negative assortative
mating was found between these strains. As expected,
all comparisons with Baja and Sonora flies showed
reduced mating success between Baja males and So-
nora females. The significant positive assortative mat-
ing was primarily a function of the disproportionate

number of matings by Sonora females with males of
their own strain.

Sexual isolation indices from the second group of
experiments are shown in Table 1B. Similar patterns
of isolation were observed in the more recent tests.
Almost all significant isolation indices were found in
tests between Sonora and Baja strains. Tests for iso-
lation among Baja or among Sonora strains indicated
no isolation within these regions (Table 1B, at bottom).

DISCUSSION

To understand the evolution of behavioral isolation
among D. mojavensis flies, the extent to which all four
populations of D. mojavensis are isolated from each
other was examined. A number of generalizations can
be made. First, the most consistent and significant be-
havioral isolation is found between Sonora females and
Baja males. This is true of females from the SON3
strain, which came from the same host plants as the
Baja strains, suggesting host adaptation is not in itself
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a major determinant of isolation. Second, the discrim-
ination by some females against Baja males does not
necessarily extend to all males from the other geo-
graphic host races. For example, males from southern
California show reduced mating success with females
of most other races, and in some tests, reduced success
with their own females. Third, the lack of isolation
between flies of the northern-most Sonora strain (SON2)
and that of southern California (CAL) may reflect a
history of gene flow between these populations. Fourth,
males from Sonora and from the Santa Catalina Island
strain tend to show the greatest relative mating success
with females of other races. Finally, the fact that flies
from the La Paz region (BAJA1), at the southern tip
of the Baja Peninsula, appear to behave differently from
other Baja strains is suggestive of some sort of differ-
entiation, perhaps clinal in nature, within Baja itself.

The observed isolation patterns suggest that the fac-
tors underlying sexual isolation in D. mojavensis pop-
ulations are more complex than just host plant adap-
tation or degree of genetic differentiation. The
geographic host races showing the greatest and most
consistent isolation, Sonora and Baja, both utilize co-
lumnar cacti of the same genus (Stenocereus) while the
southern California and Santa Catalina Island popu-
lations breed in barrel and prickly pear respectively.
Analysis of their chemical constituents confirms that
organ pipe and agria are more similar to each other
than to prickly pear (Kircher, 1982). Other features of
the breeding sites provided by these cacti, such as rot
density and duration, may also place significant pres-
sure on the resident Drosophila influencing their life
histories (Etges, 1990), size (Krebs, 1990), and physi-
ology (Toolson et al., 1990). These characters could
indirectly underlie sexual isolation through their effects
on general activity or vigor. But geographic host plant
shifts in cactophilic Drosophila are not necessarily as-
sociated with sexual isolation. Host plant shifts be-
tween Baja and Sonora populations of both D. mettleri
and D. nigrospiracula (from Carnegiea gigantea to
Pachycereus pringlei respectively) were not found to be
associated with any sexual isolation between geograph-
ic populations of either of these Drosophila species
(Markow et al., 1983).

Other biotic and abiotic variables besides host plant
ecology may contribute heavily to differentiation of
mojavensis populations in ways influencing sexual iso-
lation. For example, a class of lipid, the epicuticular
hydrocarbons, underlies the ability to regulate water
loss in desert-adapted arthropods (Toolson, 1988). In
populations of many insect species, including Dro-
sophila, hydrocarbon composition-varies with regional
climatic factors such as temperature and humidity
(Toolson and Kuper-Simbron, 1989). Epicuticular hy-
drocarbons also act as mating pheromones in several
insect species, and even slight changes in their com-
position have been shown to selectively and signifi-
cantly influence mating success in D. mojavensis from
Sonora (Markow and Toolson, 1990). While epicutic-
ular hydrocarbon composition in D. mojavensis from
Sonora and Baja differs in a way that could explain the
sexual isolation observed between these two geographic
populations (Markow and Toolson, 1989), nothing is
known of the profiles of these lipids in the other D.
mojavensis strains.

Because epicuticular hydrocarbons act as phero-
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mones as well as regulators of cuticular permeability,
their composition may also be sensitive to the presence
of closely related species. In Sonora, there are consid-
erable areas of sympatry between D. mojavensis and
its sibling species D. arizonae. This sympatry is asso-
ciated with increased sexual isolation between the two
sibling species (Wasserman and Koepfer, 1977) and
has been invoked to explain changes in the mate rec-
ognition of D. mojavensis in Sonora so as to increase
their sexual isolation from Baja flies (Zouros and d’En-
tremont, 1980). Drosophila mojavensis from southern
California and Santa Catalina Island experience no
sympatry with closely related species; thus the flies
from these populations would not be expected to be as
discriminating as Sonora flies against flies from other
geographic host races. However, if the presence of D.
arizonae in Sonora has caused Sonora D. mojavensis
females to be more generally discriminating against
other mojavensis strains, we would have expected this
to show up in tests with CAL and SCI males. The fact
that it did not means that if the presence of D. arizonae
has caused character displacement in the sexual rec-
ognition system of sympatric D. mojavensis, the effect
for some reason is strongest in the latter’s interaction
with D. mojavensis from Baja. While reproductive
character displacement may have occurred in Sonora
D. mojavensis, the possibility that variation in mate
recognition systems (Butlin, 1989) of the different geo-
graphic host races evolved independently is not elim-
inated. In my laboratory we are currently analyzing the
epicuticular hydrocarbons of D. mojavensis from CAL
and SCI populations in order to evaluate the relative
importance of these compounds in the observed pat-
terns of sexual isolation. However, we fully expect rig-
orous study will reveal that the factors controlling the
evolution of sexual isolation in this species to be di-
verse and complex.
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