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Abstract

Understanding the genetic basis of adaptation to novel environments remains one of the
major challenges confronting evolutionary biologists. While newly developed genomic
approaches hold considerable promise for addressing this overall question, the relevant
tools have not often been available in the most ecologically interesting organisms. Our
study organism, 

 

Drosophila mojavensis

 

, is a cactophilic Sonoran Desert endemic utilizing
four different cactus hosts across its geographical range. Its well-known ecology makes it
an attractive system in which to study the evolution of gene expression during adaptation.
As a cactophile, 

 

D. mojavensis

 

 oviposits in the necrotic tissues of cacti, therefore exposing
larvae and even adults to the varied and toxic compounds of rotting cacti. We have devel-
oped a cDNA microarray of 

 

D. mojavensis

 

 to examine gene expression associated with
cactus host use. Using a population from the Baja California population we examined gene
expression differences of third instar larvae when reared in two chemically distinct cactus
hosts, agria (

 

Stenocereus gummosus

 

, native host) vs. organpipe (

 

Stenocereus thurberi

 

,
alternative host). We have observed differential gene expression associated with cactus
host use in genes involved in metabolism and detoxification.
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Introduction

 

Natural selection can shape patterns of variation at all
levels of complexity, from gene to genomes to individuals
and populations. Recently, technological advancements
have made it possible to examine patterns of variation at
the level of the transcriptome using microarrays (reviewed
in Ranz & Machado 2006). Levels of interspecific
transcriptional variation can differ dramatically across
organisms and across studies (Jin 

 

et al

 

. 2001; Oleksiak 

 

et al

 

.
2002; Cheung 

 

et al

 

. 2003; Ranz 

 

et al

 

. 2003). Although the
major control of this variation (

 

cis

 

 vs. 

 

trans

 

) is still
debatable, there appears to be a large amount of epistasis
(Brem 

 

et al

 

. 2002; Rockman & Wray 2002; Yvert 

 

et al

 

. 2003;
Morley 

 

et al

 

. 2004; Storey 

 

et al

 

. 2005) and it is becoming
apparent that natural selection has played a role in the
transcriptional differences 

 

between

 

 species (Rifkin 

 

et al

 

.
2003; Nuzhdin 

 

et al

 

. 2004; Gilad 

 

et al

 

. 2006). A question of

interest is how natural selection shapes the transcriptional
variation 

 

within

 

 a species. Fortunately, microarray technology
can be applied to ecologically interesting species, allowing
for the incorporation of a species’ ecology into its studies of
genomic and transcriptome variation (Gibson 2002; Feder
& Mitchell-Olds 2003).

 

Drosophila mojavensis

 

 with its well defined ecology
and recently derived genomic tools (http://rana.lbl.gov/
drosophila/) provides an excellent system to investigate the
role of transcriptional evolution in an ecologically inter-
esting organism. 

 

Drosophila mojavensis

 

 is endemic to the
deserts of southwestern USA and northwestern Mexico
(Heed 1978). Its cactophilic lifestyle implies that it ovi-
posits, develops and feeds as adults in the necrotic tissues
of specific cactus species (Heed 1982). There are four
geographically and genetically isolated host races of

 

D. mojavensis

 

, each utilizing a different cactus host (Fellows
& Heed 1972; Ruiz & Heed 1988; Reed 

 

et al

 

. 2006). The
Sonoran population utilizes the organpipe cactus (

 

Stenocer-
eus thurberi

 

), Baja California the agria cactus (

 

Stenocereus
gummosus

 

), Mojave Desert the barrel cactus (

 

Ferocactus

 

Correspondence: Luciano Matzkin, Fax: (+1 520) 626 3522; E-mail:
lmatzkin@email.arizona.edu 



 

UNCORRECTED P
ROOF

 

2

 

L .  M .  M A T Z K I N  

 

E T  A L .

 

© 2006 The Authors
Journal compilation © 2006 Blackwell Publishing Ltd

 

cylindraceus

 

), and Catalina Island the prickly pear cactus
(

 

Opuntia

 

 spp.). The necroses of each different cactus spe-
cies provide the different 

 

D. mojavensis

 

 populations with
very distinct chemical environments (Heed 1978; Vacek
1979; Kircher 1982), which are both a function of the cactus
tissues as well as the microfauna associated with the necro-
sis (Starmer 1982; Starmer 

 

et al

 

. 1986). Depending on the
chemical composition of each cactus host we can expect a
different set of loci to be associated with the detoxification
of the compounds, including orthologs to known detoxifica-
tion genes such as P450s and Glutathione-S-transferase
(

 

Gst

 

) (Feyereisen 1999; Enayati 

 

et al

 

. 2005), and a set of loci
associated with metabolic pathways depending on the
alcohol/sugar composition of the cactus hosts.

The goal of this study was to identify loci and pathways
that are differentially expressed in 

 

D. mojavensis

 

 third
instar larvae during a cactus host shift. We built a micro-
array for 

 

D. mojavensis

 

 using 6520 random ESTs isolated from
a cDNA library. We then exposed a Baja California popu-
lation of 

 

D. mojavensis

 

 to its native host (agria) and to an
alternative host (organpipe, the host in Sonora) and used
the microarray to identify genes that were differentially
regulated in each of the cactus treatments. We conclude
that (i) cactus host usage has a significant effect on gene
transcription; (ii) loci whose function involved detoxifica-
tion are differentially regulated in response to a cactus
host shift; and (iii) a subset of the differentially expressed
loci may have arisen 

 

de novo

 

 in the 

 

D. mojavensis

 

 lineage.
This represents the first study of transcriptional variation
in an ecologically characterized 

 

Drosophila

 

 species.

 

Materials and methods

 

Development of the microarray

 

The 

 

Drosophila mojavensis

 

 stock used in the development
of the microarray was originally collected in San Carlos,
Sonora, Mexico in November of 2000. A laboratory culture
was established using multiple females and maintained
on standard banana/opuntia medium (Tucson 

 

Drosophila

 

Species Stock Center, http://flyfood.arl.arizona.edu/
opuntia.php3) in glass bottles. For the purpose of creating
a comprehensive cDNA library, we collected tissue from
several life stages. For collection of embryos, large num-
bers of adults were allowed to oviposit in a layer of yeast
paste on banana/opuntia laboratory medium for 12 hours
and then removed. The 

 

D. mojavensis

 

 embryos were then
collected at 0, 12, and 24 h post oviposition. Embryos were
collected by washing yeast paste containing oviposited
eggs through a fine mesh screen, treating embryos to
multiple washes with deionized water in a 50 mL conical
tube, then snap frozen in liquid nitrogen and stored at

 

−

 

80 

 

°

 

C. For all other tissue collection, a large number of
adult flies were allowed to oviposit on either banana/

opuntia laboratory medium or mashed organpipe cactus
for 12 hours; samples were then collected accordingly
during different times of development. From these two
media, we collected 

 

D. mojavensis

 

 larvae every 12 hours
from 36 h post oviposition to pupation (168 h) and pupae
every 12 hours from pupation (180 h) to eclosion (288 h).
Larvae and pupae were washed several times in deionized
water, transferred to microcentrifuge tubes containing
50 

 

µ

 

L of deionized water, and snap frozen and stored at

 

−

 

80 

 

°

 

C. The adults that emerged from the two media
were collected at one and 10 days posteclosion. Females
and males were collected for both age groups. Half of
the 10 day old flies were allowed to mate, therefore
obtaining a set of virgin and mated flies (females/males) for
each of the two rearing media. Collected adults were placed in
dry microcentrifuge tubes and frozen/stored as above.

RNA was individually extracted from all samples using
the TRizol (Invitrogen) method. RNA quality was assessed
using a spectrophotometer as well by running 1% formal-
dehyde agarose gels. For each stage (embryo, larva, pupa
and adult), equal amounts of total RNA from each extrac-
tion were pooled and PolyA + mRNA was extracted from
each pooled RNA using Oligotex mRNA minipreps (Qia-
gen Inc). We pooled 2 

 

µ

 

g of mRNA from each life stage into
a total mRNA sample, which was then used for library con-
struction. The SMART cDNA Library Construction kit
(Clontech Laboratories Inc.) was used to create the cDNA
library. cDNA fragments were ligated to a 

 

λ

 

TriplEx2 vector
and packaged into a phage (MaxPlax Lambda, Epicentre).
The phage was used to transform BM25.8 

 

E. coli

 

 cells.
Approximately, 2.3 million transformants were created,
assuring that most genes expressed are represented in the
transformant pool. The library was amplified using the 

 

gene-
trapper

 

 Protocol (Invitrogen). About 350 000 transformants
were placed in each of six 500 mL bottles of LB/Carbeni-
cillin (100 mg/mL)/SeaPrep agarose (FMC) and incubated
overnight at 37 

 

°

 

C. Colonies were collected by centrifuging
for 20 min at 8000 r.p.m. Transformants were plated and
40 000 clones were collected using a robotic colony picker (Q-
bot, Genetix) housed at the Arizona Genomics Institute at the
University of Arizona. Of the 40 000 clones, 6517 were PCR
amplified, verified by running them in a 2% agarose gel,
cleaned (using a 96-well Millipore PCR purification block on
a Biomek FX robot) and rehydrated in a printing solution of
50% DMSO. In addition to the clones, we included 11 spots:
one blank, five 

 

D. mojavensis

 

 alcohol dehydrogenase-1 (

 

Adh-
1

 

) and five alcohol dehydrogenase-2 (

 

Adh-2

 

). All spots were
printed in duplicate on GAPS II aminosilane coated slides
(Corning) using a Virtek Chipwriter PRO microarray spotter.

 

Host shift experiment

 

A 

 

Drosophila mojavensis

 

 isofemale line originally collected
from a necrotic agria cactus in La Paz, Baja California
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(February, 2001) was utilized for the microarray experi-
ments. This line is normally reared in standard banana/
opuntia media. Since the purpose of this experiment
was to observe the response of cactus host shifts, the
cactus media must be as representative of the natural
ecology of the system as possible. Given the significant
effects of the microfauna of necrotic tissue on the life
history and development of 

 

D. mojavensis

 

 (Fellows & Heed
1972; Starmer 1982; Starmer 

 

et al

 

. 1986; Etges & Heed 1987;
Etges 1989) we added a cocktail of the most common
cactophilic microfauna. The cocktail included five yeast
species (

 

Pichia cactophila

 

, 

 

P. amethionina, Candida sonorensis

 

,

 

C. ingens

 

, and 

 

Sporopachydermia cereana

 

, kindly provided
by W. T. Starmer, Syracuse University) and a bacterial
strain (

 

Pectobacterium cacticida

 

) commonly found in necrotic
cacti (obtained from the American Type Culture Collection).

We followed a modified version of the Brazner 

 

et al

 

.
(1984) protocol for the preparation of the cactus necrosis.
The cactus tissue used was first cut into cubes (

 

∼

 

25 g), auto-
claved (10lb-10min, 115 

 

°

 

C), placed into a sterile container
and inoculated with the pectinolytic bacterium (

 

P. cacticida

 

).
After two days, approximately 10 000 cells of each cactus
yeast strain were applied onto the cactus cubes. Two
days after the yeast inoculation, approximately 800 decho-
rionated, sterile embryos were collected, half of which
were dispersed on the inoculated necrotic agria and half on
necrotic organpipe (165 g of tissue each). Approximately
10-day old adults from the Baja California line were
allowed to oviposit in embryo collection cages (Genesee
Scientific) for 24 h, at which time the embryos were col-
lected. Embryos were sterilized by first washing them with
a saline solution, dechorionated with a Clorox solution,
and re-washed with sterile saline (Starmer & Gilbert 1982).
After 10 days, third instar larvae (

 

∼

 

350 per treatment) were
collected, snap frozen using liquid N2 and stored at 

 

−

 

80 

 

°

 

C.
The RNA was extracted from 10 groups of 20–30 larvae
per treatment using RNeasy columns (Qiagen Inc.). The
RNA was pooled per treatment, labelled (Cy3/Cy5) dur-
ing the cDNA synthesis, and hybridized to the array. Five
dye-flip replicates were performed (total of 10 slides). This
level of technical replication allows for the most robust of
signal to be evident. The labelling, PCR clean-ups, array
printing, hybridizations and scanning were performed in
the Genomic Analysis and Technology Core facility at the
University of Arizona (protocols can be found at http://
gatc.arl.arizona.edu/resources/protocols/index.php).

 

Microarray analysis

 

Hybridized slides were scanned using the Applied Precision
arrayWoRx

 

e

 

 slide scanner and analysed using the softWoRx

 

e

 

image analysis program. All of the raw intensity data was
log

 

2

 

 transformed and then quantile-transformed (Bolstad

 

et al

 

. 2003). Our analyses were done using a two-step

mixed-model 

 

anova

 

 of relative fluorescence intensities as
suggested by Wolfinger 

 

et al

 

. (2001). The first step is done
globally using the complete dataset of transformed inten-
sities (

 

Y

 

), which removes the variance associated with the
dye and array design (random variables).

Y

 

ij

 

 = 

 

µ

 

 + ARRAY

 

i

 

 + DYE

 

j

 

 + ARRAY 

 

×

 

 DYE

 

ij

 

 

 

+ Residual

 

ij

 

The second step utilizes the residuals from the first step
to do a gene-specific test. Therefore, per gene the model
is:

Residual

 

ijkl

 

 

 

= 

 

µ

 

 + ARRAY

 

i

 

 + DYE

 

j

 

 + CACTUS

 

k

 

 + ARRAY 

 

×

 

 SPOT

 

il

 

 + Error

 

ijkl

 

Where 

 

i

 

 is the number of different array designs (only two,
organpipe derived RNA labelled with Cy3 and agria with
Cy5, and vice versa), 

 

j

 

 the two dyes (Cy3/Cy5), 

 

k

 

 the two
cactus treatments (agria/organpipe), and 

 

l

 

 the duplicate
spotting on the array slides. Similar to the global step,
ARRAY and its interaction with SPOT were treated as
random variables, where DYE and CACTUS were fixed
effects and CACTUS is the variable of interest. The
CACTUS estimate and its 

 

P

 

-value is what was used to
create the volcano plot (see Fig. 1). The analysis was
executed as described in Gibson & Wolfinger (2004) using
the PROC MIXED model in SAS (ver. 9.0; SAS Institute
Inc.). Given that multiple statistical tests are being ex-
ecuted a correction was needed. The Bonferroni method
was utilized, but for microarray data sets this method is
conservative (Jin 

 

et al

 

. 2001). For example given an initial
analysis of 6520 spots, a P-value must be lower than 7.67 ×
10−6 to be able to call a test significant (α = 0.05/6520).
Therefore we also utilized the False Discovery Rate (FDR)
Method of (Storey & Tibshirani 2003). The FDR method
calculates the number of false positives within a set of
significant values (P < 0.05) and then calculates a new
significance probability, q. The test is considered to be sig-
nificant, if q < 0.05.

A total of 740 spots were sequenced for verification
purposes. This included a large majority of the Bonferroni
corrected significant spots, a portion of the FDR corrected
significant spots plus a random set of spots. Sequences (i.e.
spots on the array) that were identical were grouped and
the analysis was then repeated. Identity of the spots was
determined by implementing the BLASTX algorithm
against the complete set of Drosophila melanogaster proteins
(Release 4.2). The threshold e-value was set at 1 × 10−10,
anything greater than this value was not considered a
hit to D. melanogaster. In cases where there was no hit to
the D. melanogaster database, the clone sequence was
queried to the UC Santa Cruz Genome Browser (http://
genome.ucsc.edu/) Drosophila mojavensis database (August
2005 assembly) using the BLAST algorithm. If the query

1

2
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result was within 200 bp upstream of a D. mojavensis pre-
dicted gene, the predicted gene sequence was queried
against the D. melanogaster database and the identity of the
best hit (e-value < 1 × 10−10) recorded.

Real-Time PCR verification

For two differentially regulated loci, Adh-2 and
Glutathione-S-Transferase D1 (GstD1), we verified their
change in expression using Real-Time PCR, as it tends to
be more sensitive than microarray technology. Using a
sample of the pooled RNA from the above microarray
experiment, cDNA was created using an iScript cDNA
Synthesis Kit (Bio-Rad Laboratories Inc.). This cDNA was
used as the template for the Real-Time PCR which was
done in a Bio-Rad iCycler IQ platform. The reaction mix
was composed of 12.5 µL of IQ SYBR Green Supermix
(Bio-Rad Laboratories Inc.), 0.25 µL of forward and
reverse primers, 7 µL of dH2O and 5 µL of cDNA tem-
plate. For each locus and treatment 16 reactions were
performed. For the purpose of standardizing the results,
a control locus (Ribosomal subunit 16 s) was used. The
forward/reverse primer sequences for the three loci were
as follows: Adh-2 (TTGAAGACAATCTTCGACAAGC/
ACGCTCGATCTGGTAGTCGT); GstD1 (GTCTACCTG-

GTGGAGAAGTACGGCAAGAC/TGGCGAACACCT-
GAGGATAGTAGTAGTTGG); 16 s (CTCGTCCAACCAT-
TCATTCC/GAAATTTTAAATGGCCGCAGT). Efficiency
for each locus was determined by running a dilution series
(1000x, 100x, 10x, 1x) in triplicate. The results were
standardized using the Pfaffl (2001) method and statistical
significance was determined using a Pairwise Fixed
Reallocation Randomization Test using the REST program
(Pfaffl et al. 2002).

Results

From the original analysis of the 6520 spots (including Adh-
2 and Adh-1), 430 spots (225/205 in the organpipe/agria
treatments) were significantly differentially expressed
using the conservative Bonferroni correction. For the sake
of simplicity we will refer to significantly expressed genes
as those up-regulated in that particular treatment. Since all
measurements are relative (organpipe treatment minus
agria treatment) a gene that is significantly differentially
expressed (i.e. up-regulated) in the agria treatment can be
also viewed as being down-regulated in the organpipe
treatment. Applying the FDR correction we observed 1514
significant spots (613/901 in the organpipe/agria treat-
ments). We then sequenced a portion of the significant
spots (Bonferroni and FDR corrected) as well as a set of
nonsignificant spots for a total of 740. Clone sequences
have been deposited to GenBank (accession numbers
EC590007-EC590746). Identical sequences were grouped
(total of 354 different sequences) and the above described
statistical analysis was again performed on this smaller
dataset. The BLASTX score, spot identity and expression
ratio for all sequenced spots can be found in the supple-
mentary data (including a FastA file containing the clones
or contiged clones used for the BLAST analysis). A total
of 6127 gene specific tests were performed, of those 173
(77/96 in the organpipe/agria treatments) were signifi-
cant using the Bonferroni correction (α = 8.16 × 10−6) and
1034 (378/656 in the organpipe/agria treatments) using
the FDR correction. The volcano plot (Fig. 1) shows the
range of expression differences observed, ranging from
a 14.1-fold increase in organpipe to a 5.1-fold increase in
agria. All expression data has been placed in the Gene
Expression Omnibus under series entry #GSE5148.

The majority (85%) of the Bonferroni corrected signifi-
cant genes were sequenced. Of these, 62 were up-regulated
on the organpipe treatment and 84 on agria (104 and 129,
respectively, for FDR corrected genes). Table 1 illustrates
the function and numbers of significant genes observed in
both treatments. Eighteen loci (25 using FDR) in the organ-
pipe treatment and 39 (54 using FDR) in agria were of
unknown function. These include loci which provided a
BLASTX hit but with no known functional information as
well as loci in which no hit to the Drosophila melanogaster

Fig. 1 Volcano plot of genes associated with host utilization in
Drosophila mojavensis. Fold difference (organpipe minus agria
expression) in log2 scale is on the x-axis. Positive values translate
to a greater expression in the agria treatment and negative values
a greater expression in the organpipe treatment. The P-value for
each gene-specific anova is on the y-axis. The solid lines indicate
the cut-off value for significance using the Bonferroni correction
(172 spots above the line) and the dashed line is the cut-off value
for the FDR correction (1034 spots above the line).
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gene set was observed (see Table 1). Additionally, all genes
with no BLASTX hit to D. melanogaster were queried to
the complete RNA families database (Rfam, http://
www.sanger.ac.uk/Software/Rfam/index.shtml) to search
for noncoding RNA’s. The only noncoding RNA (7SLRNA)
found in our clone set did not significantly change its
expression with host usage.

The 23 genes (16 from agria and seven from organpipe
using FDR) that had no clear homology to any D. mela-
nogaster gene were searched via BLAST to the assemblies
of the other 10 sequenced Drosophila genomes (http://
rana.lbl.gov/drosophila/). Eighteen of these 23 genes
were exclusively found in Drosophila mojavensis and
labelled MSG’s (mojavensis specific genes), and the remain-
ing five were labelled NMG’s (not melanogaster genes). Fur-
thermore, all significant and nonsignificant MSG’s (32
genes total) were queried against the adult D. mojavensis
EST library previously sequenced (ftp.ensembl.org). Seven
out of the 32 MSG’s were found in the adult EST library.
Overall, there were seven significant MSG’s in the organ-
pipe treatment and 16 in agria.

Genes that perform a diverse set of functions appear to
have been differentially regulated as a response to the
experimental cactus host shift (Table 1). There are some
differences in the types of genes that are affected by cactus
host use. For example, a greater number of genes associ-
ated with protein biosynthesis were up-regulated in the
agria treatment, but a greater number of genes associated
with the larval cuticle were up-regulated in the organpipe
treatment (see Table 1 and supplementary data). Overall,
17 genes involved with metabolism were observed in
agria, while only 10 in organpipe. In the organpipe treat-
ment, we observed the up-regulation of GstD1, a gene with
known response to toxins (Tang & Tu 1994; Le Goff et al.
2001; Ranson et al. 2001; Chen et al. 2003).

To verify the microarray expression results, real-time
PCR was performed on two significantly regulated genes,
Adh-2 and GstD1 (Fig. 2). Microarray data shows a 1.5 fold
increase in Adh-2 expression when reared on organpipe.
Using real-time PCR there was a 2.9 fold increase in Adh-2
expression on organpipe (P < 0.001). A similar agreement
between the microarray and real-time PCR data was observed
for GstD1. From the microarray data, a 1.3 fold increase in

Table 1 Summary list of the biological process of the differen-
tially regulated genes under the two different cactus host treatments.
The numbers of Bonferroni and FDR (in parentheses) corrected
significant genes are shown

Biological process Agria Organpipe

antimicrobial humoral response 4 (4) 0 (0)
axis specification 0 (0) 1 (1)
cell adhesion 0 (0) 0 (1)
cell motility 0 (0) 1 (2)
chromatin assembly 0 (0) 0 (4)
cytoskeleton 0 (1) 0 (2)
defence response 1 (1) 0 (1)
defence response — bacterial 1 (1) 2 (2)
defence response; protein folding 0 (0) 2 (6)
defence response; response to toxin 1 (1) 0 (2)
development 1 (1) 3 (3)
DNA repair/replication 1 (1) 0 (0)
electron transport 0 (0) 0 (1)
ethanol oxidation 0 (0) 1 (1)
heme oxidation 0 (0) 0 (1)
larval cuticle 2 (4) 11 (14)
lipid transport 0 (0) 1 (1)
metabolism 2 (2) 1 (2)
metabolism — carbohydrate 0 (1) 0 (1)
metabolism — carbohydrate; 
oxidoreductase activity

2 (2) 0 (0)

metabolism — chitin 3 (5) 0 (0)
metabolism — coenzyme 0 (0) 1 (1)
metabolism — lipid 4 (5) 3 (4)
metabolism — nucleotide 1 (1) 0 (0)
metabolism; oxidoreductase activity 0 (0) 1 (2)
mitochondrial electron transport 2 (2) 1 (1)
muscle contraction 0 (0) 1 (1)
nervous system 1 (1) 0 (1)
nitrogen compound metabolism 1 (1) 0 (0)
oogenesis 0 (1) 0 (0)
phosphorylation 0 (0) 1 (1)
protein biosynthesis 10 (28) 0 (3)
protein transport 0 (0) 1 (1)
proteolysis and peptidolysis 1 (4) 6 (10)
puparial adhesion 0 (0) 1 (1)
RNA binding 1 (1) 0 (0)
serine-type endopeptidase inhibitor 2 (3) 0 (0)
signal transduction 0 (0) 2 (3)
transcription 0 (0) 0 (1)
transport 4 (4) 3 (4)
unknown (found in D. melanogaster) 27 (38) 14 (18)
unknown (MSG + NMG) 12 (16) 4 (7)
Total 84 (129) 62 (104)

Fig. 2 Mean and standard error of the fold up-regulation (in log2
scale) of Adh-2 and GstD1 in the organpipe treatment calculated
via the microarray or real-time PCR.
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GstD1 was observed on organpipe, while a 1.4 fold increase
(P = 0.069) was seen using real-time PCR technology. The
efficiencies of the three amplicons (Adh-2, GstD1 and 16 s)
were adequately high (97%, 98% and 92%, respectively).

Discussion

Significant gene expression differences were observed as a
result of cactus host utilization in Drosophila mojavensis.
These transcriptional differences arise from the different
chemical environments D. mojavensis larvae were exposed
to. There are significant differences in cactus host chemistry
between the four D. mojavensis populations (Heed 1978;
Vacek 1979; Kircher 1982). It is these chemical differences
that, among other factors, could be responsible for the
specialization and genetic divergence that has occurred
between the four D. mojavensis populations. Below we
discuss our results based on the transcriptional differences
observed in genes involved metabolic processes and
detoxification pathways, two important types of processes
that we predicted would be affected by cactus host shifts.

Metabolic response to cactus host shifts

A wide array of chemical compounds are found within
cactus necrosis. The composition of these compound
mixtures are both a function of the cactus and of the
microfauna associated with the necrosis (Starmer 1982;
Starmer et al. 1986). There are several differences in
necrosis chemistry between the four cactus host of
Drosophila mojavensis, involving the presence or absence of
alkaloids, free sugars and triterpene glycosides (Kircher
1982). It is believed that the ancestral host of D. mojavensis
is Opuntia (Heed 1982), therefore the adaptation to agria
and organpipe have been most recent (< 1.5 million years,
Matzkin 2004; Reed et al. 2006). Both of the hosts used in
this study (agria and organpipe) are columnar cacti and
therefore have some common features. While both agria
and organpipe contain very low concentrations of free
sugars and large amounts of lipids and triterpene glyco-
sides (Kircher 1982), they differ considerably in which
classes of lipids and triterpene glycoside they contain
(Djerassi et al. 1954; Djerassi & Lippman 1955; Kircher
1982). For example, the agria cactus contains specific
triterpenes (possible saponins) which were used by native
people to poison fish (Bravo-Hollis 1978). Additionally,
it is known that the sterol macdougallin, which is a
major component of the agria cactus, inhibits larval develop-
ment in insects (Cespedes et al. 2005). The low content
of free sugars in cactus tissue provides a very unique
habitat for D. mojavensis, forcing them to obtain energy
from other sources. It is known that D. mojavensis are
able to use alcohols, such as ethanol and 2-propanol, as
an alternative source of energy (Starmer et al. 1977; Heed

1978; Brazner et al. 1984). In Drosophila melanogaster, a large
portion of the carbon flux through alcohol metabolism
pathway ends up as lipids stores (Freriksen et al. 1991;
Heinstra & Geer 1991), and this is most likely the same
pathway that D. mojavensis utilizes.

Our results show that host shifts clearly affect the
expression of genes performing a wide variety of functions
(Table 1). Unfortunately, for the large majority of these loci
we know very little of their biology, yet general patterns of
expression effects can be concluded from this dataset.
There were a total of 27 genes (17 in agria, 10 in organpipe)
with some role in metabolism in which its expression was
affected by host use. Genes associated with lipid metabol-
ism were differentially regulated under both treatments
(5 in agria, 4 in organpipe), which could possibly be a
response to the lipid content of the two cacti (Kircher 1982)
as well as a response to a difference in alcohol environment
(Vacek 1979; Freriksen et al. 1991; Heinstra & Geer 1991).
Overall, the differential expression of metabolic genes
reflects the different metabolic strategies (i.e. the turning
on or off of different pathways) employed for the ability to
survive, develop and reproduce in their respective necrotic
cactus environment.

In addition to lipids, triterpenes and glycosides there are
marked differences in the alcohol composition between the
necrosis of agria and organpipe (Vacek 1979). This differ-
ence is reflected in some of the loci that were differentially
regulated in this study. The gene formaldehyde dehydro-
genase (Fdh, formerly known as octanol dehydrogenase
or Odh) was up-regulated in the native agria cactus. In
D. melanogaster, allozyme variation at Fdh explains a large
portion of ethanol resistance, as well as explaining variation
in life history characters of flies exposed to ethanol (Bokor
& Pecsenye 1998; Bokor & Pecsenye 2000). Among the genes
up-regulated in the organpipe treatment was Adh, a locus
in which extensive work has been done on its role in alco-
hol detoxification (Chambers 1988). In D. mojavensis (and
its sibling species D. arizonae) a duplication of the Adh locus
occurred, creating a larval/ovarian (Adh-1) and a late-
larval/adult (Adh-2) expressed paralog (Batterham et al.
1984; Atkinson et al. 1988). Since their duplication the two
paralogs have functionally diverged and each of them
has played a role in the host adaptation of D. mojavensis
(Matzkin & Eanes 2003; Matzkin 2004; Matzkin 2005). In this
study only the expression of Adh-2 was affected (up-
regulated in organpipe). Previous studies have shown two
allozyme alleles for Adh-2 (termed Slow and Fast). The
Slow allele is found at a high frequency in mainland
populations, where D. mojavensis uses organpipe cactus, and
the Fast allele is found in Baja California populations,
where D. mojavensis uses agria cactus (Heed 1978). The two
alleles have different substrate specificities, the Fast allele
has a significantly greater activity on 2-propanol (Matzkin
2005), which is the alcohol found in large quantities in
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agria (i.e. Baja California) (Vacek 1979). The expression
differences observed at Fdh, Adh-2 as well as those in
lipid metabolism suggest that the environmental alcohol
differences between the necrosis of agria and organpipe
can elicit a substantial response.

Detoxification pathways

Another important class of genes affected by the host shift
were those with a role in chemical (detoxification) and
immune defence. Eleven such loci were over expressed in
the alternative host, organpipe, relative to the native host,
agria (3 loci). Some of these loci are known to respond
to toxins such as CG33178, a Microsomal glutathione-S-
transferase-like gene (Mgstl; up-regulated in agria), and
metallothionein A (MtnA) and Glutathione-S-transferase
D1 (GstD1), both up-regulated in organpipe. The MtnA
gene has been extensively studied for its involvement in
heavy metal detoxification (Posthuma & Van Straalen
1993). Although to our knowledge heavy metal concen-
trations of either cactus host have never been deter-
mined, heavy metal accumulation from soils has been
reported in the saguaro cactus (Carnegiea gigantea)
(Kolberg & Lajtha 1997). Therefore, the differential
expression of MtnA could present differences in heavy
metal concentrations between the two cacti. Of the two
classical detoxification gene families (P450 and Gst) only
Gst’s were found to be differentially regulated. In all four
Sonoran desert cactophiles ( Drosophila mojavensis, Drosophila
mettleri, Drosophila pachea and Drosophila nigrospiracula)
P450s can be induced and used in a detoxification response
to alkaloid exposure (Danielson et al. 1998; Fogleman &
Danielson 2000). Unlike the other cactus hosts, agria and
organpipe do not contain alkaloids (Kircher 1982), and
therefore it is possible that P450s were not induced in this
study. Further, another possible reason for the lack of P450
overexpression in our study is that the array was created
from a random sample of clones, consequently it is
possible that they are not present in our microarray.

The other class of detoxification genes, Gst’s, are involved
in the detoxification of a wide array of compounds and
generally function on hydrophobic organic compounds
(Atkins et al. 1993). In mammals Gst’s are induced during
exposure to carcinogens and are involved in drug resist-
ance (Hayes & Pulford 1995), while in insects it has been
largely examined in the context of insecticide resistance
(Enayati et al. 2005). In this study, one member of this gene
family with high homology to the Drosophila melanogaster GstD1
locus was differentially regulated. In both D. melanogaster
and in Anopheles gambiae GstD1 has been implicated in the
resistance of these species to the insecticide DDT [1,1,1,-
trichloro-2,2-bis-(p-chlorophenyl)ethane] (Tang & Tu 1994;
Le Goff et al. 2001; Ranson et al. 2001; Chen et al. 2003). In
addition to being differentially expressed in organpipe, a

nucleotide sequence survey strongly suggests that GstD1
has gone through a period of adaptive protein evolution
(Matzkin unpublished). Null alleles of the D. melanogaster
ortholog of the locus up-regulated in agria (Mgstl) signi-
ficantly reduce lifespan of adults, lowering the efficacy
of the cellular detoxification system (Toba & Aigaki 2000).

Overall, the data suggest that several detoxification
pathways are utilized when exposed to necrotic cacti. What
remains unclear are the identities of the specific chemical
signals that D. mojavensis utilizes to modify gene expres-
sion. One possible strategy that the flies could employ is to
have a general detoxification response, especially for detoxi-
fication gene families that might share common biochem-
ical properties such as Gst’s. For example, in vertebrates,
pre-exposure to the triterpene lupeol (a component of
organpipe cactus) induces high Gst and catalase expression
when exposed to cytotoxins (Sudharsan et al. 2005). In this
study both catalase and a Gst gene were up-regulated when
exposed to organpipe. This might be a possible mechanism
for increasing the expression of several detoxification
genes when exposed to a novel chemical environment.

Novel genes associated with the cactophilic lifestyle

New genes and gene functions are created through a
process of duplication, mutation and selection, and several
models have been proposed to describe the mechanism for
the creation, maintenance and diversification of new genes
(Ohta 1988; Hughes 1994; Force et al. 1999; Francino 2005).
One commonality between these models is that the
molecular and functional divergence between paralogs is
eventually driven by natural selection. In this study we
found a total of 18 genes (32 genes including nonsignificant
spots) that appear to be unique to Drosophila mojavensis (MSG’s)
and possibly to other members of the repleta group. These
loci do not appear to be noncoding RNA and furthermore
a few of these loci have been previously sequenced from an
adult EST library of D. mojavensis. We would not expect all
of our MSG’s to be present in the adult EST library given
that our microarray contain cDNA for all life stages and
our experiment involved only third instar larvae. The
molecular evolution of these loci still needs to be determined,
but these data suggest that some of these loci might have
arisen de novo in D. mojavensis (or its recent ancestor), and
could be members of pathways that have been recruited as
a response to the cactophilic lifestyle of D. mojavensis.

Conclusions

The central aim of this study was to examine the pattern
of transcriptional regulation associated with cactus host
utilization in Drosophila mojavensis. As predicted from the
different chemical composition of the cactus host of D.
mojavensis, a wide array of detoxification and metabolic



UNCORRECTED P
ROOF

8 L .  M .  M A T Z K I N  E T  A L .

© 2006 The Authors
Journal compilation © 2006 Blackwell Publishing Ltd

genes were differentially expressed as a response to a host
shift. In addition, the observation of genes specific to the
lineage leading to D. mojavensis suggest that novel gene
functions have been recruited possibly as a response to the
cactophilic ecology of this species. The present study focused
on one population of D. mojavensis, future work will assess
the intra — and interpopulation transcriptional variation to
examine the different (or similar) detoxification strategies
utilized across the entire range of this species.
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