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SUMMARY

Foxo transcription factors integrate extrinsic signals
to regulate cell division, differentiation and survival,
and specific functions of lymphoid andmyeloid cells.
Here, we showed the absence of Foxo1 severely cur-
tailed the development of Foxp3+ regulatory T (Treg)
cells and those that developed were nonfunctional
in vivo. The loss of function included diminished
CTLA-4 receptor expression as the Ctla4 gene was
a direct target of Foxo1. T cell-specific loss of
Foxo1 resulted in exocrine pancreatitis, hind limb
paralysis, multiorgan lymphocyte infiltration, anti-
nuclear antibodies and expanded germinal centers.
Foxo-mediated control over Treg cell specification
was further revealed by the inability of TGF-b cyto-
kine to suppress T-bet transcription factor in the
absence of Foxo1, resulting in IFN-g secretion. In
addition, the absence of Foxo3 exacerbated
the effects of the loss of Foxo1. Thus, Foxo transcrip-
tion factors guide the contingencies of T cell differ-
entiation and the specific functions of effector cell
populations.

INTRODUCTION

The rate of autoimmune and hypersensitivity diseases in human

beings is on the order of 3%–20% of the adult population,

respectively (Cooper and Stroehla, 2003; Torres-Borrego et al.,

2008), and this implies that, at least in modern society, a loss

of immune regulation is common. With respect to autoimmunity

mediated by the adaptive immune system, there are at least

three mechanisms that moderate self-reactivity. Central toler-

ance, peripheral tolerance, and dominant regulatory T (Treg)

cells are all required to avoid damage from immune effector

mechanisms (von Boehmer and Melchers, 2010; Mueller, 2010;

Wing and Sakaguchi, 2010). A conclusion is that the immune

system is tenuously balanced between preventing and causing
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disease, and this is almost certainly the result of evolutionary

pressure exerted by myriad and ever present infectious agents

(Hedrick, 2004).

Immune regulation depends upon differentiation processes

that produce different effector-type T cells. In the late stages of

thymocyte development, antigen recognition can result in cell

death associated with negative selection or it can result in differ-

entiation to natural Treg (nTreg) cells (Hsieh et al., 2006). In

peripheral lymphoid organs, CD4+ T cells that recognize antigen

differentiate into one of four distinct, though not necessarily

stable, phenotypes characterized by signature cytokine secre-

tion: T helper 1 (Th1 producing interferon-g [IFN-g]); Th2 (inter-

leukin-4 [IL-4]), Th17 (IL-17); or induced Treg (iTreg) cells (trans-

forming growth factor-b [TGF-b]) (Wan and Flavell, 2009; Zhu

and Paul, 2010). In addition, effector T cells found in germinal

centers and characterized as T follicular helper (Tfh) cells may

constitute a unique T cell subset or a further differentiation state

of the effector cells described above (Linterman and Vinuesa,

2010). In some fashion, the conditions of activation guide the

developing cells toward an effector state that is self-reinforcing

and often appropriate to a particular infectious agent; when

differentiation misses the mark, the immune response is likely

to be ineffectual or even pathogenic.

An important aspect of Treg cell function is the expression of

the transcription factor Foxp3, given that its absence results in

immune dysregulation, polyendocrinopathy, enteropathy, and

X-linked syndrome (IPEX syndrome) (Ziegler, 2006). Although

initially considered to be a lineage commitment factor, studies

have revealed the presence of a higher level of regulation

upstream of Foxp3 (Sugimoto et al., 2006; Gavin et al., 2007;

Lin et al., 2007; Hill et al., 2007). One aspect of this control

may be based upon TGF-b signaling (Rubtsov and Rudensky,

2007; Liu et al., 2008), and recent work has focused on the

manner in which signaling through the T cell receptor (TCR), cor-

eceptors, and TGF-bRI or TGF-bRII receptors combine to

promote the differentiation of Treg cells (Tone et al., 2008).

Foxo transcription factors regulate many facets of basic cell

physiology including cell cycle progression, cell death, differen-

tiation, and DNA repair. In lymphocyte populations subject to

dramatic expansion, contraction, and contingency-dependent

differentiation, Foxo proteins would be predicted to play an
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important role. In addition, Foxo proteins regulate specialized

lymphocyte functions such as gene recombination, homing,

and cytokine receptor expression, and they control several crit-

ical checkpoints in lymphocyte development (Hedrick, 2009;

Dejean et al., 2010; Ouyang and Li, 2010).

Here, we investigated widespread autoimmunity resulting

from the T cell-specific deletion of Foxo1 and greatly exacer-

bated by the additional deletion of Foxo3. The origin of the

autoimmunity was found to be a loss in dominant tolerance,

and experiments showed that the development of both natural

and induced Treg cells required Foxo transcription factors.

Consistent with these results, Foxo1-deficient T cells stimu-

lated in the presence of TGF-b were misdirected to a Th1 cell

phenotype. Furthermore, evidence is presented for the direct

Foxo1-mediated regulation of Ctla4, a critical coreceptor for

Treg cell function (Friedline et al., 2009). Finally, the loss of

Foxo1 resulted in the spontaneous appearance of Tfh cells,

the expansion of B cell numbers, and autoantibody production.

Thus, Foxo transcription factors play an essential role in

specifying the program of T cell differentiation, most impor-

tantly in the pathway leading to development and function of

Treg cells.

RESULTS

Foxo1 Prevents Systemic T Cell Activation
Foxo1 was shown to be necessary for the survival of naive T cells

and homing to secondary lymphoid organs (Figures 1A and 1B,

upper panel, and Gubbels Bupp et al., 2009; Kerdiles et al.,

2009; Ouyang et al., 2009). In addition, we found that mice

with a T cell-specific deletion of Foxo1 (Cd4Cre Foxo1f/f) harbor

an expanded population of effector memory CD4+CD44hi T cells.

Given that CD44lo Foxo1-deficient naive T cells have decreased

CD62L, lymph node (LN) CD4+ T cells were further characterized

for the expression of CD69. LNs from Cd4Cre Foxo1f/f mice

possessed a considerably enhanced proportion of effector

memory CD4+ T cells when compared with wild-type littermates

(Figure 1A), and these cells steadily increased in number with

age (Figure 1B, lower panel).

Foxo1 regulates sphingosine-1-phosphate receptors through

KLF2 (Fabre et al., 2008) (data not shown), and sphingosine

1-phosphate receptor-1 (S1P1) was shown to complex with

CD69 to prevent CD69 cell surface expression (Shiow et al.,

2006). Thus, diminished expression of S1P1 could allow ectopic

expression of CD69. Nevertheless, Foxo1-deficient mature

(TCRbhiHSAlo) CD4+ single-positive (SP) thymocytes downregu-

lated CD69 expression (Figure 1C). In addition, T cells from

OTII Foxo1f/f Cd4Cre Rag1–/– mice, which are monoclonal,

ovalbumin-specific, and unable to recognize endogenous or

commensal antigens, displayed a typical CD44lo naive pheno-

type lacking CD69 (Figure 1D). Thus, in the absence of Foxo1,

CD69 expression is normally regulated and we can conclude

that the effector memory CD4+ T cells are expanded in peripheral

lymphoid organs.

The rescue of naive T cells in mice with a mono-specific T cell

repertoire shows that a polyclonal receptor repertoire is required

for the spontaneous T cell activation. This, in turn, suggested an

ongoing immune response, a notion further supported by several

observations. In short term BrdU-pulse experiments we found
I

a significantly higher proportion of cycling CD4+ CD44+ T cells

in the peripheral lymphoid organs of Cd4Cre Foxo1f/f mice

compared to wild-type mice (Figure 1E). Moreover, purified

Foxo1-deficient CD4+ T cells, restimulated in vitro with PMA

and ionomycin, secreted high quantities of IFN-g, IL-4, and

IL-17, but not IL-2, indicative of increased T cell differentiation

biased toward Th1 effector cells (Figure 1F). Histological exam-

ination also revealed mild mononuclear cell infiltration in nonlym-

phoid organs including the heart, salivary glands, kidney, and

liver of 1-year-old Cd4Cre Foxo1f/f mice (Figure 1G). Notably,

by 6 to 8 months of age, Cd4Cre Foxo1f/f mice developed signs

of spontaneous encephalitis revealed by partial hind-limb paral-

ysis (Yamamoto et al., 2000) (data not shown), and this was

found to be associated with an age-progressive peripheral nerve

or spinal cord T cell infiltrate (Figures 1H and 1I). Thus, Foxo1

expression is essential to prevent systemic and pathological

T cell activation.

T Cell-Specific Foxo1 Deletion Leads to Tfh Cell
Development and B Cell Autoimmunity
Further examination of LN populations revealed increased

numbers of B cells in Cd4Cre Foxo1f/f mice already by 3 weeks

of age (Figure 2A). Yet, as we showed previously (Kerdiles et al.,

2009), B cells in these mice were not deleted for Foxo1 (Fig-

ure S1 available online). The B cell population expansion was

associated with an increased proportion of cycling B cells

(Figure 2B) and B cell differentiation characterized by enlarged

proportions of germinal center (GL-7+FAS+) and isotype-

switched (IgM–IgD–) B cells (Figure 2C and data not shown)

(Han et al., 1997). Consistent with these results, immunofluores-

cence analysis of frozen spleen sections revealed the sponta-

neous development of IgD– PNA+ germinal centers in the

spleens of Cd4Cre Foxo1f/f mice (Figure 2D). This apparent

B cell activation was associated with substantially increased

quantities of circulating IgA, IgG1, IgG2a, and IgG2b isotypes

(Figure 2E) and, in addition, a 10-fold increased titer of

dsDNA antibodies (Figure 2F). Thus, a T cell-specific deletion

of Foxo1 is sufficient to drive the development of B cell

autoimmunity.

Germinal center formation, isotype switching, and somatic

hypermutation rely on cognate B cell-T cell interactions involving

a specialized population designated as follicular helper cells

(Tfh cells) (McHeyzer-Williams et al., 2009). These cells are char-

acterized by expression of the chemokine receptor CXCR5, the

cytokine IL-21, and the transcription factor Bcl-6. A subpopula-

tion of Tfh cells, expressing high CXCR5 and PD-1, are localized

to the germinal centers and important for B cell activation (Linter-

man and Vinuesa, 2010).

Initial experiments confirmed that CXCR5 expression is

restricted to CD44hiCD62Llo CD4+ T cells (data not shown),

and analysis revealed that Cd4Cre Foxo1f/f mice have an

increased proportion and absolute number of CXCR5-express-

ing cells, including CXCR5hiPD-1hi cells (Figures 2G and 2H

and data not shown). Furthermore, analysis of sorted effector

memory CD4+ cells revealed a significantly increased expression

of Bcl6 and Il21 in Foxo1 deficient cells (Figure 2I), although no

reduction in Prdm1 (encoding Blimp1) was noted. Thus, T cell-

specific Foxo1 deletion results in the appearance of Tfh cells

correlated with the development of B cell autoimmunity.
mmunity 33, 890–904, December 22, 2010 ª2010 Elsevier Inc. 891
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Figure 1. Foxo1 Controls T Cell Tolerance In Vivo

(A–F) Foxo1f/f (filled bars or symbols) and Cd4Cre Foxo1f/f mice (open bars or symbols) from 8-week- old mice unless otherwise indicated.

(A) Analysis of LN CD4+ T cells (n R 5 mice per genotype analyzed in two independent experiments).

(B) Enumeration of naive (upper panel) and effector memory (lower panel) CD4+ T cells in peripheral lymphoid organs (mean + SEM; nR 3mice per genotype and

time point).

(C) Flow cytometry profile of thymic TCRbhi CD4+ single-positive cells from 8-week-old Foxo1f/f (black lines) and Cd4Cre Foxo1f/f mice (blue lines) (n = 3 mice

analyzed per genotype).

(D) Splenic OTII cells (n R 4 mice per genotype analyzed in two independent experiments).

(E) Analysis of BrdU incorporation (18 hr pulse) into CD4+ T cells fromCd4Cre Foxo1f/f mice. Compiled data (mean + SEM; n = 5–6mice per genotype analyzed in

two independent experiments).

(F) Cytokine secretion by total LNCD4+ T cells stimulated for 24 hrwith PMA+ionomycin (mean +SDof duplicate cultures, one representative experiment out of three).

(G) H&E staining of nonlymphoid tissues from 1-year-old mice (n = 3–4 mice per genotype).

(H) Enumeration of total infiltrating T cells in 7- to 8-month-old Foxo1f/f (filled circles) and Cd4Cre Foxo1f/f mice (open circles).

(I) Hind limb paralysis over time.
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Figure 2. Foxo1 Expression in T Cells Is Required to Prevent Secondary B Cell Activation and Autoimmunity

(A–F) Foxo1f/f (filled bars or symbols) and Cd4Cre Foxo1f/f mice (open bars or symbols) from 8-week-old mice unless otherwise indicated.

(A) B220+ cells in peripheral lymphoid organs at ages indicated (mean + SEM; n R 3 mice per genotype and time point).

(B) BrdU incorporation by B220+ cells in peripheral lymphoid organs (mean + SEM; n R 5 mice per genotype analyzed in two independent experiments).

(C) LN B220+ cells from 8-week-old mice (n R 10 per genotype analyzed in three independent experiments).

(D) Immunofluorescence of frozen spleen sections (n = 5 to 6 mice per genotype analyzed in two independent experiments).

(E) Serum Ig amounts by isotype.

(F) ELISA quantification of anti-dsDNA antibodies (pooled results from two independent experiments).

(G) Flow cytometry profile of CD4+ CD44hi T cells from 8-week-old mice (n R 5 mice per genotype analyzed in two independent experiments).

(H) Enumeration of cells as indicated (pooled results from three independent experiments).

(I) Relative expression (RT-qPCR) of Prdm1 (Blimp-1), Bcl-6, and Il-21 mRNA, normalized to B2m mRNA expression, from sorted effector memory cells (see

Figure 1A) (pooled results from four independent experiments).
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Figure 3. T Cell Activation in Foxo1-Deficient Mice Is Not a Result of an Altered Homeostasis

(A) LN CD4+ T cells from 8- to 12-week-old mice (n R 5 mice per genotype analyzed in two independent experiments).

(B and C) Enumeration of effector memory CD4 T cells (B) and B cells (C) in peripheral lymphoid organs (mean ± SEM; nR 5 mice per genotype from two inde-

pendent experiments).

(D and E) Phenotypic analysis of B cells in peripheral lymphoid organs (pooled results from two independent experiments).

(F) Profile of LN CD4 T cells and proportions of CD69+ CD4 T cells in 8-week-old Foxo1f/f (gray) and ERCre Foxo1f/f (green) mice treated with tamoxifen for 5 days

and rested for 5 days (pooled results from two independent experiments).
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T Cell Activation Is Not a Consequence of Disrupted
Homeostasis
A possibility was that the autoimmunity noted was affected

by the requirement for Foxo1 in Il7ra transcription (encoding

IL-7Ra) and its necessity for naive T cell survival. We thus sought

to determine whether a transgene encoding IL-7Ra would

rescue the naive T cell population in Cd4Cre Foxo1f/f mice (Yu

et al., 2004). As expected, the transgene expression fully

restored IL-7Ra and Bcl2 expression (Figures S2A–S2C)

in vivo, and it reestablished the sensitivity of Foxo1-deficient

T cells to IL-7 in culture (Figures S2D). Nonetheless, CD4+

T cells from Cd2-Il7ra Cd4Cre Foxo1f/f mice retained an

increased proportion and absolute number of activated-memory

cells compared to Cd2-Il7ra Foxo1f/f control mice (Figures 3A

and 3B). In addition, the Cd2-Il7ra transgene did not restore

a normal number of B cells in the LN, nor did it relieve the

increases in germinal center and isotype-switched B cells

(Figures 3C–3E).

As previously described, we used the ERCre transgene to

acutely delete Foxo1 (Guo et al., 2007; Kerdiles et al., 2009).

Tamoxifen treatment regimen resulted in normal numbers of
894 Immunity 33, 890–904, December 22, 2010 ª2010 Elsevier Inc.
naive T cells in peripheral lymphoid organs, yet this acute

deletion of Foxo1 led to a markedly increased population of

CD69+ CD4+ T cells (Figure 3F). Thus, even in nonlymphopenic

conditions, deletion of Foxo1 rapidly led to T cell activation.

Foxo1 Controls Dominant T Cell Tolerance
The control of autoimmune T cells involves central tolerance,

cell-intrinsic peripheral tolerance, and dominant tolerance medi-

ated by regulatory T cells. The process of negative selection was

thus analyzed in several different forms. The CD5 expression on

thymocytes is correlated to the strength of TCR signaling, and it

can reveal the process of negative selection (Dutz et al., 1995).

A comparison of thymocyte subpopulations from Foxo1f/f and

Cd4Cre Foxo1f/f mice showed that CD4+CD8+ (double positive

[DP]), CD4+CD8– (CD4SP), and CD4–CD8+ (CD8SP) subsets

exhibited identical CD5 expression profiles (Figure S3A). In addi-

tion, DP thymocytes from OTI Cd4Cre Foxo1f/f and control mice

were equally sensitive to OVA-peptide-mediated deletion in

culture (Figure S3B), and there did not appear to be a disruption

in the peripheral TCR repertoire, at least by the criterion of

Vb expression (Figure S3C). Finally, to directly test negative
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(A) LN CD4 T cells 8 weeks after irradiation and (1:4 WT:KO) bone-marrow cell transfer into Tcra–/– mice. Different radiation chimeras are as follows: (I) Foxo1f/f

(CD45.1) BM / Tcra�/� (CD45.2) host; (II) Cd4Cre Foxo1f/f (CD45.1/2) BM / Tcra�/� (CD45.2) host; (III) 1:4 Foxo1f/f (CD45.1) + Cd4CreFoxo1f/f (CD45.1/2)

BM / Tcra�/�(CD45.2) host. Representative results for 2–4 mice analyzed per condition. Recovery of TCR-b+CD4+ T cells in the mixed chimera was

74% wt, 36% KO. Shown are results from one of two experiments.

(B) Foxp3+ cell recovery from mixed bone marrow chimeras described in (A) (n = 3 mice analyzed). Shown are results from one of two experiments.

(C) Irradiated Tcra�/� mice were reconstituted with bone marrow as indicated. Analysis gated on T cells originating from the Foxp3� donor. Results are pooled

from two independent experiments.
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selection in vivo, mice were bred to express H2Ek in order to

examine the efficiency of Mtv superantigen-mediated deletion

of T cells bearing Vb5 and Vb11 (Woodland et al., 1991). Vb5-

and Vb11-bearing T cells were selectively deleted in mice ex-

pressing H2Ek, and this was not affected by the loss of Foxo1

(Figure S3D).

Foxo transcription factors also control the expression of Fas

ligand (FasL) (Brunet et al., 1999), and T cell-specific expression

of FasL has been demonstrated to play a role in autoimmunity

even though the underlying mechanisms are still unclear

(Mabrouk et al., 2008). Intracellular staining for FasL revealed

a small but detectable induction byCD44hi CD4 T cells compared

withCD44loCD4T cells analyzeddirectly ex vivo, and thiswasnot

affected by the deletion of Foxo1 (Figure S3E). Further, the strong

induction of FasL expression observed upon activation was also

unaltered by the deletion of Foxo1 (Figure S3F). Finally, FasL defi-

ciencies in gldmutant mice or T cell-specific FasL-deficient mice

are associated with the accumulation of an unconventional B220-

+CD3+CD8–CD4– T cells (Ramsdell et al., 1994; Mabrouk et al.,

2008). Consistent with normal FasL expression, we did not

observe this accumulation in Cd4Cre Foxo1f/f mice (Figure S3G

and data not shown). Thus, Foxo1 is dispensable for FasL expres-

sion and FasL-dependent peripheral tolerance mechanisms.

To distinguish between cell-intrinsic and dominant-suppres-

sive mechanisms, we produced bone marrow chimeras in which
I

irradiated Tcra–/– mice were reconstituted with bone marrow

from wild-type (Foxo1f/f) mice, from Cd4Cre Foxo1f/f mice, or

from a 1:4 mixture of the two. T cells from mice reconstituted

with Foxo1f/f bone marrow possessed a typical distribution of

naive and recently activated T cells (Figure 4A, column I),

whereas mice reconstituted with Cd4Cre Foxo1f/f bone marrow

developed a large population of effector memory T cells (Fig-

ure 4A, column II). Importantly, in the mice reconstituted with

the mixture, the presence of cells derived from the Foxo1f/f

bone marrow suppressed the emergence of effector memory

Cd4Cre Foxo1f/f T cells (Figure 4A, column III). Furthermore, in

the mixed bone marrow chimera the vast majority of Foxp3+

Treg cells were of wild-type origin (Figure 4B). These results

were consistent with a cell-intrinsic deficiency in the develop-

ment or survival of Foxo1 deficient Foxp3+ Treg cells and a

defective dominant tolerance in Cd4Cre Foxo1f/f mice.

If Foxo1 is required for Treg cell function, then in irradiated

mice reconstituted with Foxp3– bone marrow, the addition of

wild-type, but not Cd4Cre Foxo1f/f, bone marrow should restore

quiescence to the T cell population that develops from Foxp3-

deficient bone marrow (Fontenot et al., 2003). Mice were

examined 6–7 weeks after irradiation before the appearance of

dramatic pathology. As shown, the percentage of CD44lo naive

T cells averaged �5% in Tcra�/� hosts reconstituted with bone

marrow from Foxp3 mutant mice (Figure 4C). The addition of
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Figure 5. Foxo1 Controls nTreg Cell Homeostasis and Development
(A–I) Eight-week-old Foxo1f/f (filled bars, symbols or histograms) and Cd4Cre Foxo1f/f (open bars, symbols, or histograms) mice unless otherwise

indicated.

(A) Analysis of Foxp3+ cells within thymic CD4 SP cells (pooled results from twos experiments).

(B) Total thymic CD4 SP Foxp3+ cells (mean + SEM; n = 3–7 mice per time point) with age.

(C) Profile of thymic CD4 SP Foxp3+ cells. Numbers indicates geoMFI or percentages (when bar is present) in accordance with the color code.

(D) LN TCR-b+ cells from 8-week-old mice (n R 5 mice per genotype analyzed in two independent experiments). Enumeration of TCR-b+ CD4+ Foxp3+ cells

in peripheral lymphoid organs of 8- to 15-week-old mice mice (n R 9 mice per genotype analyzed in three independent experiments).

(E) Analysis of Ki67 expression assessed by flow cytometry on gated TCRb+ CD4+ Foxp3+ LN cells (n R 9 mice per genotype analyzed in three independent

experiments).

(F) Phenotype of TCRb+ CD4+ Foxp3+ cells in peripheral lymphoid organs (n R 9 mice per genotype analyzed in three independent experiments).

(G) CTLA-4 expression on CD4+ TCRb+ Foxp3+ LN cells.

(H) CTLA-4 expression after 3 days of stimulation in culture with anti-CD3 and anti-CD28 and TGF-b. Dotted line indicates isotype control.
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Foxo1f/f bone marrow rescued an average of 55% naive Foxp3-

T cells. By contrast, addition of bone marrow from Cd4Cre

Foxo1–/– mice did not substantially rescue a naive T cell pheno-

type within the Foxp3- T cells (Figure 4C). In this cohort of mice

(Figure 4C), a population of Foxo1-deficient Foxp3+ cells devel-

oped, and from this we infer that Foxo1-deficient Treg cells are

functionally deficient in vivo.

Natural Treg Cell Development Is Foxo1 Dependent
The development of Foxo1-deficient Treg cells was further

examined in the thymus. Young Cd4Cre Foxo1f/f mice exhibited

a noticeable decrease in the proportion and number of Foxp3+

cells among thymic mature CD4 SP cells that diminished with

age (Figures 5A and 5B). Phenotypic analyses revealed that in

8-week-old mice, despite near normal Foxp3 expression,

Foxo1-deficient thymic Treg cells showed reduced CD62L

expression, consistent with its Foxo1-dependent expression

(Kerdiles et al., 2009), but they also exhibited diminished CD25

and CTLA-4 expression (Figure 5C). An implication is that

Foxo1 is important for gene expression that is required for

Treg effector function.

Normal or increased proportions and numbers of CD4+

Foxp3+ cells were observed in peripheral lymphoid organs

of Cd4Cre Foxo1f/f mice when compared to wild-type mice

(Figure 5D). Accordingly, we found significantly increased

proportions of Ki67+ Treg cells in LN and spleen (Figure 5E),

and peripheral Treg cells were mostly CD44hiTCRblo CD103+,

indicating an activated phenotype (Figure 5F). These data are

consistent with the notion that a reduced number of Foxo1-defi-

cient thymus-derived Treg cells develop but expand in the

peripheral lymphoid organs.

Similar to thymocytes, both naive Foxp3+ T cells as well as

culture-stimulated Foxp3+ or Foxp3– lymph node T cells ex-

pressed lower amounts of CTLA-4 (Figures 5G and 5H). These

results suggested the possibility that Foxo1 is directly required

for Ctla4 transcription, and as such, we analyzed the Ctla4

gene for conserved Foxo-binding sites. One evolutionarily

conserved Foxo-binding site was identified 193 bp upstream

of the transcription start site (Perkins et al., 1996) (Figures S4A

and S4B). In order to study the role of this site in Ctla4 expres-

sion, we performed Foxo1-specific chromatin immunoprecipita-

tion by using activated T cells from Foxo1f/f or ERCre Foxo1f/f

mice treated with tamoxifen. As shown in Figure 5I, two different

primer pairs flanking the putative site elicited a strong and

specific signal in wild-type but not Foxo1-deficient T cells,

whereas four other primer sets up and downstream did not (Fig-

ure 5I and Figure S4C).

These results suggested the possibility that the autoimmunity

associated with a deficiency in Foxo1 arises from an incomplete

program of gene expression in the extant Foxp3-positive T cells

that includes an insufficiency of CTLA-4 expression. In fact, the
(I) Chromatin immunoprecipitation of Foxo1. Fold enrichment over Ig control indica

of the Ig control in the immunoprecipitation step. Primers are indicated by their pos

of three experiments.

(J) Hematoxylin-and-eosin-stained sections of pancreata from 9-month-old Fo

minimal (3/10) in the periductal and interstitial areas of the pancreas in wild-type m

on periductal and perivascular connective tissues with an extension of inflammat

mice (11/11). No insulitis or islet involvement was noted other than bystander da

I

autoimmune phenotype seen in mice with a T cell-specific

Foxo1 deficiency exhibits exocrine pancreatitis (Figure 5J) remi-

niscent of that in Ctla4 mutant mice with a TCR-b transgene (Ise

et al., 2010).

Foxo1 Regulates TGF-b Responsiveness of CD4 T Cells
Because Foxo1 has previously been shown to act as a coactiva-

tor with Smad4 downstream of TGF-b signaling, we considered

the possibility that it is necessary for TGF-b-induced differentia-

tion of Treg cells. In vitro stimulation of CD25–CD69– CD4+ T cells

in the presence of TGF-b resulted in the generation of Foxp3+-

induced regulatory T (iTreg) cells (Chen et al., 2003) (Figure 6A);

however, iTreg cell induction was highly impaired when cells

purified from tamoxifen-treated ERCre Foxo1f/f mice were stim-

ulated under the same conditions (Figure 6A). This did not occur

because of altered proliferation (Figure 6A), and it was main-

tained over a wide range of TGF-b concentrations (Figure 6B).

Further, this defect resulted from cell intrinsic mechanisms given

that coculture with wild-type CD45.1 cells did not rescue the

Foxo1-deficient iTreg cell differentiation (Figure 6C), nor did the

presence of Foxo1-deficient T cells diminish the differentiation

of wild-type Treg cells. These results demonstrate that Foxo1

is necessary for induced-Treg cell differentiation and confirm

the notion that increased LN Treg cells in Cd4Cre Foxo1f/f mice

arise by homeostatic expansion of nTreg cells.

Analyses revealed a reduced expression of the TGFbRII chain

in naive CD4 T cells from Cd4Cre Foxo1f/f (Figure S5A) or ERCre

Foxo1f/f mice treated with tamoxifen (Figure S5B). Although

these results suggest a proximal signaling defect, four observa-

tions argue against this possibility. One, activation in the pres-

ence of TGF-b caused the majority of Foxo1-deficient T cells

to produce IFN-g, as if they had been misdirected to become

Th1 cells (Figure 6D). Two, TGF-b stimulation normally sup-

pressed IL4 secretion in Foxo1f/f Cd4Cre CD4 cells (Figure S5C).

Three, wild-type T cells progressively acquire a Foxp3+ pheno-

type over a 90-fold titration of TGF-b (Figure 6B), whereas

Foxo1-deficient T cells, with a 2-fold decrease in TGFbRII

expression, did not respond in this assay (Figure 6B). Four,

TGF-b-mediated Smad2,3 phosphorylation was not altered by

the acute deletion of Foxo1 (Figure S5D). Rather, these results

indicate that Foxo1-deficient T cells responded to TGF-b, but

the response was misdirected. The few Foxo1-deficient

Foxp3+ iTreg cells induced, either cultured alone (Figure 6E) or

together with wild-type CD45.1 cells (Figure 6F), had compa-

rable expression of Foxp3 and the Foxp3 target genes, CD25

(Figure 6E), andGITR (Figure 6F). However, similar to nTreg cells,

Foxo1-deficient iTreg cells expressed reduced amounts of

CTLA-4 compared to wild-type iTreg cells (Figures 6E and 6F).

Previouswork has shown that TGF-b normally suppresses Th1

cell development by preventing the IFN-g induction of T-bet (Lin

et al., 2005). Stimulation of T cells showed an expected increase
tes the difference between the real-time PCR signal with anti-Foxo1 versus that

ition relative to the transcription start site (Figure S4). Results are representative

xo1f/f and Cd4Cre Foxo1f/f mice. Inflammatory cells were absent (7/10) to

ice. In contrast, scattered foci with prominent lymphocytic infiltrates centered

ory cell infiltrates into the exocrine pancreas were observed in Cd4Cre Foxo1f/f

mage.
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Figure 6. Foxo1 Directly Controls TGF-b Responsiveness

(A–G) Purified naive CD4 T cells (CD4+ CD69– CD25–) from Foxo1f/f (filled bars and histograms) and ERCre Foxo1f/f (open bars and histograms) mice were isolated

and used for in vitro experiments.

(A) Flow cytometry profile of naive LN CD4 T cells stimulated for 3 days as indicated.

(B) Foxp3+ cells from naive LN CD4 T cells stimulated for 3 days with anti-CD3 and anti-CD28 in the presence of various concentrations of rhTGF-b (mean ± SD of

triplicates culture, one representative experiment out of three).

(C) Relative cell recovery of LN naive CD4 T cells cocultured with WT CD45.1 LN naive CD4 T cells. Percentages are indicated for each quadrant (outer numbers).

Inner box indicates the relative proportion of Foxp3+ cells (representative results of one out of two independent experiments).

(D) IFN-g intracellular stainingafterPMA-ionomycin restimulationofnaiveLNCD4Tcellsstimulated for3daysas indicated (onerepresentativeexperimentoutof three).

(E) Analysis of Foxp3+ cells recovered from culture containing anti-CD3, anti-CD28, and rhTGF-b. Numbers indicate geoMFI.

(F) Phenotype of LN naive CD4 T cells cocultured together withWTCD45.1 LN naive CD4 T cells and stimulated for 3 dayswith anti-CD3 and anti-CD28with rhTGF-b

(representative results of one out of two independent experiments). Numbers indicate geoMFI.

(G) Intracellular T-bet staining after culture for 3 days under conditions indicated in the figure. Representative results of one of two experiments are shown.
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in T-bet expression in bothwild-type and Foxo1-deficient T cells;

however, the addition of TGF-b diminished T-bet expression in

wild-type but not Foxo1-deficient T cells (Figure 6G). A similar

effect was shown for T cells cultured in Th1 cell-inducing condi-

tions including IL-12 and anti-IL-4. Altogether, these results

show that Foxo1-deficient T cells respond to TGF-b despite

reduced TGFbRII expression, but their differentiation to Treg

cells is highly compromised andmisdirected toward Th1 effector

cells.

Overlapping Roles of Foxo1 and Foxo3
Although we did not find a T cell-intrinsic phenotypic alteration

with a loss of Foxo3 (Dejean et al., 2009), we considered

the possibility that a role for Foxo3 could be revealed in the

absence of Foxo1. We first crossed Cd4Cre Foxo1f/f mice with

Foxo3Kca mice, a Foxo3-deficient strain created by insertional

mutagenesis (Hosaka et al., 2004). Compared to the parental

genotypes, Cd4Cre Foxo1f/f Foxo3Kca/Kca mice rapidly mani-

fested signs of pathology (ruffled fur, hunching) and 50% of the

mice died by the age of 15 weeks (data not shown). Double-

mutant mice exhibited severe splenomegaly, lymphadenopathy,

and multiorgan lymphocyte infiltrates (Figure 7A and data not

shown), dsDNA-specific antibodies (Figure 7B), and immuno-

globulin deposits in the kidney glomeruli (Figure 7C).

We previously reported that a deletion of Foxo3 in DCs

increased their capacity to sustain T cell viability as a conse-

quence of dysregulated IL-6 secretion (Dejean et al., 2009).

Hence, we sought to determine whether the phenotype of

Cd4Cre Foxo1f/f Foxo3Kca/Kca mice resulted from cooperative

effects of a Foxo3 deficiency in dendritic cells and a Foxo1 defi-

ciency in T cells or from cell-intrinsic redundant roles of Foxo1

and Foxo3 in T cells. To study this issue, we produced mice

with a conditional deletion in both Foxo1 and Foxo3. With dele-

tion mediated by the Cd4Cre transgene, double-mutant mice

rapidly developed signs of wasting disease and became mori-

bund as early as 8 weeks of age, with half the mice deceased

by 28 weeks (Figure 7D). Analysis of 8-week-old double-mutant

mice revealed that the proportion and number of DP thymocytes

were substantially decreased (Figure S6A) compared to controls,

and although this distortion might arise from systemic inflamma-

tion, the same phenotype was seen in OTII Rag1�/� Cd4Cre

Foxo1f/f Foxo3f/f mice (Figure 7E). Compared with wild-type,

Cd4Cre Foxo1f/f Foxo3f/f thymuses had significantly increased

numbers of TCR-bhi HSAlo single-positive thymocytes (Fig-

ure S6B) indicative of mature T cells, whereas the vast majority

were still CD62Llo and CD69+ (Figure S6C). In OTII Rag1�/�

Cd4Cre Foxo1f/f Foxo3f/f mice, the thymic profile was also

grossly normal, but the frequency of CD4 SP cells was dramati-

cally increased along with the proportion of TCR-bhi CD69+ cells

(Figure 7E). This result suggests that double-deficient thymo-

cytes do not egress expeditiously from the thymus, perhaps

because of the Foxo dependence of KLF2 expression and the

role of KLF2 in the expression of S1P receptors (Drennan et al.,

2009) (Figure S6D).

By 10 weeks of age, more than 80% of CD4+ T cells from

Cd4Cre Foxo1f/f Foxo3f/f mice exhibited an effector memory

phenotype, most of them being CD69+ (Figure 7F). This arose

from a reduction of naive CD4 T cells together with a highly

expanded effector memory CD4 cell population (Figure 7F).
I

Nonetheless, as shown for T cells from Foxo1-deficient mice,

this expansion in Cd4Cre Foxo1f/f Foxo3f/f mice was not spon-

taneous but dependent upon antigen recognition given that

OTII Rag1–/– Cd4Cre Foxo1f/f Foxo3f/f mice exhibited a 90%

loss of T cells when compared with controls (Figure 7G). Similar

to mice with a T cell-specific deletion of Foxo1, the total number

of LN B cells in Cd4Cre Foxo1f/f Foxo3f/f mice was increased

(Figure 7H), along with the numbers of GC and isotype-

switched B cells in the LN and spleen (Figure 7I and data not

shown).

Despite the mature thymocyte accumulation, there were

almost no detectable Treg cells in the thymus of Cd4Cre

Foxo1f/f Foxo3f/f mice (Figure 7J). However, similar to Cd4Cre

Foxo1f/f mice, comparable numbers of cells expressing normal

amounts of Foxp3 were recovered in the peripheral lymphoid

organs of wild-type and Cd4Cre Foxo1f/f Foxo3f/f mice (Figures

7K and 7L). We conclude that Foxo1 and Foxo3 have critical

overlapping roles in the development and function of thymic-

derived Treg cells although they are not absolutely required for

Foxp3 expression and maintenance.

DISCUSSION

The highly conserved role of Foxo transcription factors in cell-

cycle inhibition and apoptosis has been extensively studied in

the past decade; however, recent studies have challenged this

view regarding T and B cells and revealed highly specialized

roles in the regulation of the adaptive immune system develop-

ment and homeostasis (Hedrick, 2009; Dejean et al., 2010). In

this study, we uncovered mechanisms that underlie the critical

role of Foxo transcription factors in T cell fate specification,

especially with regard to Treg cell differentiation. An implication

of this work is that Foxo transcription factors integrate signaling

through the PI3K-mTORC2-AKT and TGF-b-SMAD signaling

pathways in order to guide the differentiation of CD4+ T cells.

Mice with a T cell-specific deletion of Foxo1 exhibit T cell

organ infiltration, Tfh cell differentiation, B cell proliferation,

and autoantibody production. The additional T cell-specific dele-

tion of Foxo3 dramatically aggravated this phenotype, leading to

premature death. Because we previously showed that deletion

of Foxo3 alone does not result in T cell-intrinsic defects (Dejean

et al., 2009), these results imply that Foxo1 orchestrates a

program of gene expression, whereas Foxo3 provides mainly

redundant activity in T cells. This phenomenon contrasts with

the observation that Foxo-dependent tumor suppressor activity

in vivo can be rescued by the expression of a single allele of

Foxo1, Foxo3, or Foxo4 (Paik et al., 2007).

The phenotypic characteristics resulting from T cell-specific

Foxo deficiencies are associated with two critical and interre-

lated mechanisms of T cell tolerance: TGF-b responsiveness,

as indicated by the impaired induction of iTreg in vitro, and

thymic-Treg cell development, the latter being profoundly

altered when both Foxo1 and Foxo3 were ablated. In accord

with these results, recent evidence shows that the attenuation

or inhibition of PI3K-Akt signaling in CD4+ T cells is required to

allow proper Treg cell development both in vitro and in vivo. Initial

studies reported that both human and mice peripheral Treg cells

have altered AKT phosphorylation upon TCRor IL-2R stimulation

(Bensinger et al., 2004; Crellin et al., 2007). Furthermore,
mmunity 33, 890–904, December 22, 2010 ª2010 Elsevier Inc. 899
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Figure 7. Partially Redundant Role of Foxo1 and Foxo3 in T Cells

(A–L) Eight-week-old Foxo1f/f Foxo3f/f (filled symbols) and Cd4Cre Foxo1f/f Foxo3f/f (open symbols).

(A) H&E staining of nonlymphoid tissues from 15-week-old mice (n = 6 mice per genotype).

(B) Anti-dsDNA ELISA quantification from 10-week-old mice (pooled results from two independent experiments).

(C) Immunofluorescence analysis of kidney sections from 10-week-old mice.

(D) Kaplan-Meier survival curve (n = 37, Cre- ; n = 27, Cre+).

(E) Thymic subpopulations from 8-week-old mice (n R 3 mice per genotype analyzed).

(F) Flow cytometry profile and enumeration of CD4+ T cells from the peripheral lymphoid organs (n R 5 mice per genotype analyzed in two independent

experiments).

(G) Va2+ Vb5+ cell recovery among total leukocytes in peripheral lymphoid organs (n R 3 mice per genotype analyzed).

(H) Enumeration of B220+ cells from peripheral lymphoid organs (n R 5 mice per genotype analyzed in two independent experiments).

(I) Flow cytometry profile and the number of LN B220+ germinal center cells (n R 5 mice per genotype analyzed in two independent experiments).

(J) Flow cytometry analysis and enumeration of Treg cells within thymic TCRbhi CD4 SP cells (pooled results from two experiments).

(K) Flow cytometry analysis (LN) and number of TCRb+ CD4+ Foxp3+ cells (pooled results from two experiments).

(L) Flow cytometry profile of Foxp3 expression in peripheral Treg cells.
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inhibition of PI3Ka and d, or Akt promotes Treg cell differentiation

upon TCR stimulation in vitro in the absence of TGF-b signaling

(Sauer et al., 2008). Conversely, constitutive expression of Akt

impairs TGF-b-induced Foxp3 expression in vitro and selectively

inhibits thymic Treg cell differentiation in vivo (Haxhinasto et al.,

2008), whereas T cells lackingmTORdifferentiate down a regula-

tory pathway by default (Delgoffe et al., 2009). These results are

consistent with the thesis that Foxo is required for Treg cell

development, and this depends upon counteracting the PI3K-,

mTorc2-, Akt-dependent inactivation of Foxo. This could arise

from TGF-b-induced inhibition of Akt phosphorylation or, in prin-

ciple, by a TGF-b-induced nuclear localization of Foxo via one of

the several posttranslational modifications known to override

Akt-mediated nuclear exclusion (Hedrick, 2009).

Reports show that rapamycin treatment also enhances

Foxp3+ cell development (Haxhinasto et al., 2008; Sauer et al.,

2008), and although it was thought to be specific for the inhibition

of mTorc1 and not mTorc2 (Jacinto et al., 2004), more recent

analyses have shown that long-term treatment with rapamycin

does indeed affect mTorc2 (Sarbassov et al., 2006; Julien

et al., 2010). Consistent with this notion, mTorc1-deficient cells

do not spontaneously differentiate into iTreg cells in the absence

of TGF-b (Delgoffe et al., 2009). In accord with the hypothesis

that Foxo1 is the critical downstream target of PI3K-Akt

signaling, we observed that PI3K inhibitors or rapamycin treat-

ment does not rescue the defective differentiation of iTreg

cells from Foxo1-deficient CD4 T cells (data not shown). The

present results thus establish the PI3K-mTORC2-AKT-Foxo

axis as the critical pathway in both thymic and induced Treg

cell development.

The data presented suggest a link between downstream

effectors of the PI3K pathway and the TGF-b-SMAD pathway.

Consistent with this idea, PI3K-mTOR inhibition and TGF-b

stimulation synergize to induce the development of iTreg cells

in vitro (Sauer et al., 2008). Also, studies in nonlymphoid cells

have shown that Foxo transcription factors directly interact with

SMAD3 and SMAD4 and are required to regulate part of the

TGF-b-induced gene expression program (Gomis et al., 2006;

Seoane et al., 2004). Furthermore, TGF-b suppresses the expres-

sion of T-bet (Neurath et al., 2002), and the data presented here

showed that TGF-b inhibition of T-bet required Foxo1.

As described in the introduction, extensive studies have

shown that Foxp3 is not a lineage commitment factor, but rather

there exists higher-order control of Treg cell lineage specifica-

tion. We propose that Foxo transcription factors constitute one

element of that higher order control. During the review of this

manuscript, and consistent with this contention, two reports

appeared showing that Foxo1 plays a role in the direct transcrip-

tional control of Foxp3 (Ouyang et al., 2010; Harada et al., 2010).

We note, however, that within the population of Foxp3+ Foxo1-

deficient T cells, the amount of Foxp3 per cell was only margin-

ally decreased.

One way that Foxo transcription factors could control Treg cell

development is through TGF-b, but the relationship between

thymic Treg cell development and TGF-b has not been entirely

resolved. Mice with a deficiency in TGF-b or either one of its

two receptors do not lack nTreg cells; however, T cell-specific

loss of TGFbRI caused a deficiency in nTreg cells in neonates,

and further deletion of the Il2 gene caused a complete and
I

permanent loss of nTreg cells (Liu et al., 2008). The authors

concluded that heightened IL-2 expression in the absence of

TGF-b signaling was responsible for expanding a diminished

nTreg cell population. We also found a large population of

peripheral Foxp3+ cells in mice with a T cell-specific Foxo1,

Foxo3 deficiency even though thymic Treg cell development

was very severely compromised—the implication being that

there exists a homeostatic mechanism that expands peripheral

Treg cells in the absence of adequate thymic development. We

propose that a Foxo and TGF-b-dependent genetic program

controls aspects of Treg cell differentiation that are perhaps

dispensable for the maintenance of Foxp3 expression and

Foxp3+ cell expansion in response to homeostatic or inflamma-

tory cues. Consistent with this, constitutive AKT activation

impairs de novo expression of Foxp3, but does not alter estab-

lished Foxp3 expression in Treg cells (Haxhinasto et al., 2008).

Interestingly, this phenomenon also mirrors the phenotype of

mice deficient for a conserved noncoding DNA sequences in

the Foxp3 locus (CNS3-deficientmice), inwhich despite a normal

level of Foxp3 expression, the proportion of Foxp3+ cells is

strongly decreased in the thymus but not in peripheral T cells

(Zheng et al., 2010). A possibility is that Foxo factors are neces-

sary to ‘‘open’’ the Foxp3 locus, but the Foxo sites are not neces-

sary elements for Foxp3 transcription.

Although there is a larger-than-normal population of Foxp3+

T cells inCd4Cre Foxof/f mice, these Treg cells are nonfunctional

in vivo. This can be explained in part by reduced CTLA-4 expres-

sion in thymic, peripheral, and induced Treg cells. Importantly,

this CTLA-4 phenotype is also observed in the Treg cells from

mixed bone marrow chimeras, lacking chronic inflammation

(data not shown). Underlying this loss of CTLA-4 expression is

a proximal Foxo-binding element in the Ctla4 promoter appar-

ently required for full CTLA-4 expression. As such, we propose

that the source of autoimmunity in Foxo-deficient mice derives

from a highly inefficient production of Treg cells that are also inef-

fective as a consequence of deficient CTLA-4 expression.

Finally, in mice with a T cell-specific Foxo deficiency there

appeared large numbers of Tfh cells. Such cells differentiate via

a stepwise program of signaling that includes high-affinity inter-

actions with peptide-MHC molecules, costimulation through

CD28 and ICOS, further stimulation through CD30 and OX40,

and antigen-specific cognate interactions with B cells (Linterman

and Vinuesa, 2010; McHeyzer-Williams et al., 2009). The sponta-

neous formation of large numbers Tfh cells is thus unlikely to be

simply a consequence of unrestricted T cell activation. One

possibility is that PI3K-Akt-mTorc2-Foxo signaling constitutes

a lineage commitment pathway that, in part, specifies alternative

cell fates: Treg cells versus Tfh cells. Under stimulatory condi-

tions that promote Foxo nuclear localization (e.g., the presence

of TGF-b), T cells adopt a Treg cell fate, whereas under condi-

tions that favor Foxo inactivation, such as signaling initiated by

Icos activation of the potent p50a regulatory subunit of PI3K

(Fos et al., 2008), T cells can adopt a Tfh cell phenotype. This

implies that Foxo transcription factors are downstream of the

sanroquemutation that promotes Tfh cell differentiation through

exaggerated Icos expression (Yu et al., 2007).

Another possibility is that the paucity of Treg cell differentiation

in the thymus produces a population of T cells preternaturally

poised to assume a Tfh cell phenotype. Thymocytes with
mmunity 33, 890–904, December 22, 2010 ª2010 Elsevier Inc. 901



Immunity

Foxo Factors and T Cell Specification
a high-affinity receptor preferentially differentiate into nTreg cells

(Josefowicz and Rudensky, 2009), and if this pathway is partly

inactive, these higher-affinity T cells might be overrepresented

in the secondary lymphoid organs. Because Tfh cells are also

thought to preferentially differentiate from CD4+ T cells with

a high-affinity receptor (McHeyzer-Williams et al., 2009),

a Foxo1 deficiency may increase the frequency of Tfh cell

progenitors. This, combined with a loss of Foxo transcription

factors mimicking Icos signaling and a paucity of Treg cell

activity might be sufficient to promote Tfh cell differentiation

and antibody-mediated autoimmunity. In conclusion, Foxo

transcription factors play an essential role in T cell lineage

commitment, minimally connecting the PI3K-AKT-mTOR and

the TGF-b-SMAD pathways and potentially integrating this input

with other aspects of organismal physiology tomodify the induc-

tion and course of immunity.

EXPERIMENTAL PROCEDURES

Mice

Mice were maintained in a specific-pathogen free vivarium. All experiments

were carried out in accordance to the Institutional Animal Care and Use

Committee of University of California, San Diego. Cd4Cre Foxo1f/f, ERCre

Foxo1f/f, Foxo3Kca, Foxo3f/f, Cd4Cre Foxo1f/f. OTI Cd4Cre Foxo1f/f, and OTII

Cd4Cre Foxo1f/f Rag1–/– mice on mixed FVB and C57BL/6 strain backgrounds

have been previously described (Kerdiles et al., 2009; Dejean et al., 2009).

Mice were euthanized when they were no longer able to eat and drink and

counted as deceased for the purposes of a Kaplan-Meier survival graph.

Cd2-Il7ra transgenic mice were the generous gift of A. Singer (Yu et al.,

2004) and crossed to CD4Cre Foxo1f/f mice. B10.A mice were bred to Cd4Cre

Foxo1f/f mice for generating CD4Cre Foxo1f/f H2b/k mice. In all experiments

using ERCre Foxo1f/f and Foxo1f/f controls, tamoxifen (Sigma) was adminis-

tered i.p. daily for 5 days followed by 5 days’ rest as previously described

(Kerdiles et al., 2009). Spontaneous encephalitis was identified as described

(Laouar et al., 2008). Bone marrow chimeras were produced in irradiated

Tcra�/� mice as previously described (Kerdiles et al., 2009). The source of

T cells was distinguished by CD45 alleles.

Flow Cytometry

Fluorochrome-labeled antibodies for FACS analysis were purchased from BD

Biosciences, Biolegend, or eBioscience. Biotinylated antibodies specific for

TGFbRII (R&D Systems) and CXCR5 (BD Biosciences) were used before

SA-PE was used (eBioscience). PE-conjugated antibody reagent sets were

used for Bcl2 and Ki-67 staining (BD Bioscience). Similarly, BrdU (Sigma)

incorporation was detected with a FITC-conjugated BrdU antibody reagent

kit (BD Biosciences). For intracellular Foxp3, CTLA-4, and T-bet staining, cells

were first stained with antibodies to extracellular proteins then fixed, permea-

bilized with the Foxp3 Staining Kit (eBioscience), and stained with directly

conjugated Foxp3-, CTLA-4-, or T-bet- (Santa Cruz Biotechnology) specific

antibodies. For intracellular Foxo1 staining, after permeabilization, cells were

treated with Foxo1-specific antibody (Cell Signaling) and then with a goat

anti-rabbit PE antibody (Santa Cruz Biotechnology). For intracellular cytokine

staining, cells were fixed with Cytofix/Cytoperm (BD Biosciences), permeabi-

lized, and stained with Permwash (BD Biosciences). Data were analyzed with

FlowJo Software (TreeStar).

Spinal cords were dissected from PBS-perfused mice, homogenized for

30 min at 37�C in HBSS plus 2% FCS supplemented with 1 mg/mL of Collage-

nase A (Sigma), filtered through a 70 mm nylon mesh, and centrifuged at 460 g

for 5 min at 4�C. The pellet was then resuspended in 4 ml of Percoll 70% and

overlaid with 4 ml 37% Percoll. The percoll gradient was centrifuged at 460 g

for 20 min at 20�C. Cells were collected from the 37%/70% Percoll interface.

CD4+ T Cell Purification, In Vitro Culture, and Proliferation

Naive CD4+ T cells were isolated by magnetic depletion of cells labeled with

biotinylated antibodies to Ter119, B220, MHCII, DX5, CD8, CD11b, CD25,
902 Immunity 33, 890–904, December 22, 2010 ª2010 Elsevier Inc.
and CD69 (eBioscience) and streptavidin-microbeads (Miltenyi Biotec).

Splenocytes from Tcra�/�micewere used as antigen-presenting cells. Purified

T cells were labeled with CFSE (Molecular Probes) as previously described

(D’Souza et al., 2008). For T cell activation, 105 cells/well were cultured in

U-bottom 96-well plates precoated with goat anti-Hamster IgG (Vector Labs)

and supplemented with the indicated concentrations of anti-CD3 and anti-

CD28 (Biolegend). iTreg cultures included 3 ng/mL recombinant human

TGFb1 (R&D Systems); Th1 cell-polarizing conditions included 10 mg/ml anti-

IL4 (eBioscience) and 5 ng/ml IL-12 (eBioscience). Where indicated, IL-7

(eBioscience) was added at 10 ng/ml. For restimulation, cells were cultured

for 4–5 hr with 100 ng/mL PMA (Calbiochem), 1 nM ionomycin (Sigma), and

2 mM GolgiStop solution (eBioscience) prior to intracellular cytokine staining.

Cells were pulsed with 1 mCi [3H]thymidine (PerkinElmer Life Sciences) for

the last 8 hr of culture, and radioactivity was determined by scintillation count-

ing. Secreted cytokines were quantified with the Th1, Th2, and Th17 cell cyto-

metric bead array (BD Biosciences).

Quantitative PCR

Total RNA from sorted cells was extracted with TRIzol reagent (Invitrogen) and

treated with the DNA-free kit (Ambion), and cDNA was synthesized with the

Superscript III reverse transcription kit (Invitrogen). qPCR reactions were

done with the Power SYBR Green PCR Master Mix (Applied Biosystems)

and 30 nM reference dye (Stratagene). Data were collected by an Mx3005P

(Stratagene) and analyzed with MxPro software (Stratagene). Blimp1, Bcl6,

and IL21 were amplified by PCR. Chromatin immunoprecipitation was carried

out as described (Kerdiles et al., 2009; Lin et al., 2010). All primer sequences

are available upon request.

Histology and Immunohistochemistry

For analysis of pathology and immune infiltration into nonlymphoid organs,

8–10 mm frozen sections were stained with hematoxylin and eosin. For

germinal center identification, 8–10 mm frozen LNs sections were stained

with anti-IgD-PE (Biolegend) and PNA-FITC (Vector Labs). IgG deposition in

the kidney was identified by staining with anti-IgG-PE (BD Bioscience). Pan-

creata were fixed in formalin prior to sectioning.

Antibody Quantification

The quantification of each immunoglobulin isotype in sera was determined by

use of the Mouse Immunoglobulin Isotype Panel Kit (Southern Biotech). Anti-

dsDNA antibodies in sera were quantified with the mouse anti-dsDNA ELISA

kit (Alpha Diagnostic Int.).

In Vitro and in Vivo Negative Selection

The in vitro OVA-peptide mediated thymocyte deletion assay was performed

with Tcra�/� splenocytes for antigen presentation (Vasquez et al., 1992). Nega-

tive thymocyte selection in vivo was studied by the deletion of Vb5+, Vb8+, and

Vb11+ T cells in blood of 8- to 12-week-old mice.

SUPPLEMENTAL INFORMATION

Supplemental Information includes six figures and can be found with this

article online at doi:10.1016/j.immuni.2010.12.002.
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