A Brief History of Neuronal Gene Expression: Regulatory Mechanisms and Cellular Consequences

Zilong Qiu1 and Anirvan Ghosh1,*
1Neurobiology Section, Division of Biology, University of California, San Diego, La Jolla, CA 92093, USA
*Correspondence: aghosh@ucsd.edu
DOI 10.1016/j.neuron.2008.10.039

A central goal of cellular and molecular neuroscience is to explain the development and function of the nervous system in terms of the function of genes and proteins. Models of gene regulation have evolved from being focused on transcriptional and translational control to include a variety of regulatory mechanisms such as epigenetic control, mRNA splicing, microRNAs, and local translation. Here we discuss how developments in molecular biology influenced the study of neuronal gene expression, and how this has shaped our understanding of neuronal development and function.

Introduction

The enormous influence of molecular biology on our understanding of neuronal development and function. The discovery of sensory transduction pathways, first described in the 1940s, the first study to show that extracellular signals could acutely regulate eukaryotic gene expression was a 1984 paper by Greenberg and Ziff where they reported that the proto-oncogene c-fos was rapidly induced by growth factor stimulation of 3T3 cells (Greenberg and Ziff, 1984). This study had a major impact, since it changed the concept of gene regulation from an autonomous property of cells to a process that was an integral part of a cell's response to changes in the environment. Gene regulation mechanisms are widely used to facilitate proper development and function of the nervous system and allow the nervous system to adapt to changes in the environment. In this Perspective we discuss a few examples to illustrate how the discovery of gene regulatory mechanisms over the past 20 years has been closely linked to the emergence of major ideas regarding brain development and function. Stimulus-Dependent Transcription and Neuronal Adaptive Responses

Although the relationship between genes and proteins was described in the 1940s, the first study to show that extracellular signals could acutely regulate eukaryotic gene expression was a 1984 paper by Greenberg and Ziff where they reported that the proto-oncogene c-fos was rapidly induced by growth factor stimulation of 3T3 cells (Greenberg and Ziff, 1984). This study had a major impact, since it changed the concept of gene regulation from an autonomous property of cells to a process that was an integral part of a cell's response to changes in the environment. Gene regulation mechanisms are widely used to facilitate proper development and function of the nervous system and allow the nervous system to adapt to changes in the environment. Gene regulation mechanisms are widely used to facilitate proper development and function of the nervous system and allow the nervous system to adapt to changes in the environment. In this Perspective we discuss a few examples to illustrate how the discovery of gene regulatory mechanisms over the past 20 years has been closely linked to the emergence of major ideas regarding brain development and function.

Stimulus-Dependent Transcription and Neuronal Adaptive Responses

Although the relationship between genes and proteins was described in the 1940s, the first study to show that extracellular signals could acutely regulate eukaryotic gene expression was a 1984 paper by Greenberg and Ziff where they reported that the proto-oncogene c-fos was rapidly induced by growth factor stimulation of 3T3 cells (Greenberg and Ziff, 1984). This study had a major impact, since it changed the concept of gene regulation from an autonomous property of cells to a process that was an integral part of a cell's response to changes in the environment. Gene regulation mechanisms are widely used to facilitate proper development and function of the nervous system and allow the nervous system to adapt to changes in the environment. In this Perspective we discuss a few examples to illustrate how the discovery of gene regulatory mechanisms over the past 20 years has been closely linked to the emergence of major ideas regarding brain development and function.

Stimulus-Dependent Transcription and Neuronal Adaptive Responses

Although the relationship between genes and proteins was described in the 1940s, the first study to show that extracellular signals could acutely regulate eukaryotic gene expression was a 1984 paper by Greenberg and Ziff where they reported that the proto-oncogene c-fos was rapidly induced by growth factor stimulation of 3T3 cells (Greenberg and Ziff, 1984). This study had a major impact, since it changed the concept of gene regulation from an autonomous property of cells to a process that was an integral part of a cell's response to changes in the environment. Gene regulation mechanisms are widely used to facilitate proper development and function of the nervous system and allow the nervous system to adapt to changes in the environment. In this Perspective we discuss a few examples to illustrate how the discovery of gene regulatory mechanisms over the past 20 years has been closely linked to the emergence of major ideas regarding brain development and function.
voltage-sensitive calcium channels (VSCC) (Greenberg et al., 1986). This was a critical study, as it showed that neurotransmitter-induced calcium influx, which had previously thought only to exert acute effects, could lead to a rapid and robust transcriptional response. Thus, in a short period of 2 years, the concept of activity-dependent regulation of gene expression became established, which had major implications for activity-dependent development and function of the nervous system.

A separate line of investigation from Goodman, Montminy, and colleagues, who were studying cAMP regulation of gene expression, led to the identification of CREB, a key transcription factor that mediates stimulus-dependent transcription. In 1986 they reported that cAMP regulated somatostatin mRNA levels and identified a cAMP-responsive element (CRE), which was sufficient to confer cAMP responsiveness (Montminy et al., 1986a, 1986b). Montminy and colleagues isolated the transcription factor that binds to the CRE and named it cAMP-responsive element binding protein (CREB) (Montminy and Bilezikjian, 1987). They showed that elevation in cAMP led to phosphorylation of CREB at Ser-133, and that this modification was required for transcription activation by CREB (Gonzalez and Montminy, 1989). In the meantime, Greenberg and colleagues showed that calcium-dependent induction of c-fos expression was mediated by a calcium-responsive element that also bound CREB (Sheng et al., 1991). Thus CREB was identified as a key mediator of cAMP- and calcium-dependent transcription in neurons.

The Role of CREB

A series of observations in the 1990s implicated CREB-mediated transcription as a critical mediator of adaptive responses in the nervous system. One area of active investigation was the potential role of CREB in memory. A study from the Benzer lab had implicated cAMP signaling in learning and memory (Dudai et al., 1976), and Kandel and colleagues had shown that synaptic plasticity in *Aplysia* required cAMP signaling, but it was not clear how cAMP signaling might be connected with memory. An intriguing possibility was that cAMP might exert its effects by regulating gene expression, which was supported by pharmacological studies from the 1960s and 1970s from the Flexner, Agranoff, and Barondes labs that suggested that gene expression and protein synthesis were required for the retention of memory (reviewed in Davis and Squire, 1984). Following the identification of the CRE by Montminy and colleagues, Kandel’s group showed that injection of a CRE-containing DNA fragment impaired long-term plasticity in *Aplysia* (Dash et al., 1990), which suggested that CRE-mediated gene expression was likely to be important for long-term memory.

Kandel and colleagues continued to investigate the role of cAMP signaling in plasticity and reported that cAMP stimulation of hippocampal slices mimics the late phase of long-term potentiation (LTP) (Frey et al., 1993). Shortly thereafter, Tully and colleagues reported that a dominant-negative form of CREB blocks long-term memory in *Drosophila*, and Silva and colleagues reported that mice carrying a mutation in CREB had deficient long-term memory (Yin et al., 1994; Bourchouiladze et al., 1994). While these studies built support for the idea that CREB might play an important role in memory, it was difficult to know if this pathway had a specific role in memory or whether these molecules played a more general role in mediating neuronal responses to environmental changes.

Investigation of the role of CREB in other systems suggested that CREB was unlikely to be selectively involved in memory, but rather was likely to be generally involved in mediating long-term neuronal responses to external stimuli. An important set of observations came from Eric Nestler and his colleagues, who examined the role of CREB in addiction. They showed that morphine administration reduces CREB phosphorylation in the rat locus coeruleus, and that opiate receptor antagonists increased CREB phosphorylation (Guitart et al., 1992). Subsequent work from the Nestler group showed that modulation of CREB could regulate the response to cocaine (Carlezon et al., 1998), and Malenka and colleagues showed that CREB regulates excitability of nucleus accumbens neurons, another structure implicated in cocaine addiction (Dong et al., 2006).

In separate studies Ginty, Greenberg, and colleagues showed that CREB phosphorylation in the suprachiasmatic nucleus was regulated by light, and Ginty and colleagues showed that NGF-induced signaling to CREB was important for the cell survival effects of NGF (Ginty et al., 1993; Riccio et al., 1997, 1999). Ghosh and colleagues showed that CREB was involved in activity-dependent dendritic growth (Redmond et al., 2002), and work from the Malenka group showed that CREB activity could regulate the number of silent synapses (Marie et al., 2005). These observations indicated that CREB-mediated transcription was likely to be involved in regulating a diverse set of neuronal responses.

While much of the early investigation of calcium-dependent transcription and its consequences was focused on CREB, it is now clear that calcium signaling targets a number of different transcription factors that mediate different cellular effects of calcium signaling. The Lipton, Greenberg, and Bonni labs identified MEF2 as a calcium-regulated transcription factor in neurons and showed that MEF2 was involved in mediating activity-dependent survival and in regulating excitatory synapse number (Leifer et al., 1993; Mao et al., 1999; Flavell et al., 2006; Shalizi et al., 2006). In an effort to identify novel calcium-dependent transcription factors, Ghosh and colleagues developed a new screen called Transactivator Trap and identified a set of new calcium-regulated transactivators (Aizawa et al., 2004). The first of these factors was CREST, which was shown to be involved in mediating activity-dependent dendritic growth (Aizawa et al., 2004). Two other factors cloned in this screen were NeuroD2 and LMO4, both of which are involved in barrel cortex development (Kashani et al., 2006; Ince-Dunn et al., 2006). It now appears that changes in neuronal activity in response to extracellular signals can lead to the activation of a large number of transcription factors. Some of them, such as CREB, may have a general role in neuronal adaptive responses, whereas others may have more specific roles in mediating specific aspects of activity-dependent development and plasticity.

Activity-Regulated Genes

Ever since c-fos was identified as a calcium-regulated gene, there has been an interest in identifying genes whose expression is regulated by neuronal activity. The earliest in vivo evidence of activity-dependent regulation of gene expression came from Morgan and colleagues, who showed that c-fos and other
Epigenetic Control

Research on transcriptional regulation in the last 10 years has been characterized by a shift from the study of sequence-specific transcription factors to an investigation of mechanisms that regulate chromatin. This was driven by new discoveries on the role of histone modifications, DNA methylation, and chromatin remodeling in transcriptional regulation. In 1995, Hecht and colleagues showed that histones were not just structural proteins but instead could interact with transcription regulatory factors to regulate gene expression (Hecht et al., 1995). Shortly thereafter, the Allis and Schreiber labs showed that histone acetyltransferases and histone deacetylases could regulate transcription (Brownell et al., 1996; Taunton et al., 1996). During this period, Goodman and colleagues used an ingenious strategy to identify proteins that interact with phosphorylated CREB and identified a protein called CREB-binding protein (CBP) (Chrivita et al., 1993; Kwok et al., 1994), which turned out to be a histone acetyltransferase (Ogryzek et al., 1996). The Bading and Ghosh labs showed that CBP-mediated transcription could be regulated by calcium and CaM kinase IV signaling (Chawla et al., 1998; Hu et al., 1999), suggesting that neuronal activity might regulate gene expression by regulating histone modification. Recent studies from the Mayford and Kandel groups support a role for CBP in memory (Alarcon et al., 2004; Korzus et al., 2004). It will be interesting to know whether CBP is also involved in mediating other adaptive responses in the nervous system.

Another area of epigenetic regulation that has received a great deal of attention is DNA methylation. DNA methylation has long been recognized as a mechanism to repress transcription. It is generally thought that transcriptional repression is mediated by recruitment of histone deacetylases to the methylated DNA via methyl CpG-binding proteins. Renewed interest in DNA methylation has been driven in part by the discovery that MeCP2, a methyl-CpG-binding protein, is mutated in the childhood neurological disorder Rett syndrome (Nan et al., 1997; Amir et al., 1999). It was recently shown that MeCP2 phosphorylation is regulated by calcium signaling and appears to regulate methylation of the BDNF promoter (Chen et al., 2003; Martinowich et al., 2003). This raises the exciting possibility that DNA methylation might be rapidly regulated by extracellular stimuli, but this still needs to be confirmed. There has been a flurry of papers that have linked MeCP2 to various aspects of neuronal function. Nelson and colleagues reported that cortical activity is reduced in MeCP2 null mice, and the Rosenmund lab reported that MeCP2 regulates synapse number (Dani et al., 2005; Chao et al., 2007). Zoghbi and colleagues have linked MeCP2 to feeding behavior and aggression (Fyffe et al., 2008). Identifying the targets of MeCP2 that mediate these effects should be an important goal of future studies.

A final area of investigation on epigenetic regulation has focused on chromatin remodeling complexes. These complexes generally include the core chromatin remodeling protein BRG1, which modifies chromatin by using energy from ATP hydrolysis. It is thought that remodeling of chromatin influences gene expression by affecting access of transcription-regulatory factors to DNA. The Crabtree group analyzed various BRG1 complexes in neurons and discovered that BRG1 complexes change during development and can influence dendritic development (Wu et al., 2007). Both the Crabtree and Ghosh labs found that CREST, which had previously been implicated in activity-dependent dendritic growth, is present in a complex with BRG1, suggesting that the function of the BRG1 complex can be regulated by activity (Wu et al., 2007; Qiu and Ghosh, 2008). In support of this possibility, the Ghosh group recently found that calcium influx leads to a release of a repressor from BRG1-CREST complex and recruitment to CBP to activate gene expression (Qiu and Ghosh, 2008). While CREST has been implicated in activity-dependent dendritic growth, the role of the CREST-BRG1 complex in neuronal development and plasticity needs to be rigorously tested.

Regulation of mRNA: Splicing, Local Translation, and MicroRNAs

One of the most active areas of research in the past decade has been the investigation of mRNAs. There are several mechanisms that can regulate the production of proteins from mRNAs. These include mRNA splicing, regulation of mRNA abundance by microRNAs, and control of translation. Recent studies implicate each of these mechanisms in the developing and mature nervous system.

mRNA Splicing and Neuronal Connectivity

mRNA splicing represents a powerful mechanism for generating a diverse set of proteins from one genetic locus. There are two particularly striking examples of mRNA splicing in neurons that may bear upon the problem of neuronal connectivity. The first is the protocadherin cluster in vertebrates, identified by Maniatis and colleagues (Wu and Maniatis, 1999). They described a cluster of 52 cadherin-like genes with an unusual genomic organization. The N-terminal extracellular domains of these proteins are...
encoded by separate exons, organized in three clusters (alpha, beta, and gamma) arrayed in tandem. These exons are spliced with one of three C-terminal exons to generate a family of cadherin-like proteins. The extraordinary diversity of protocadherins suggests that they may be involved in highly specific protein-protein interactions. Sanes and colleagues examined the consequences of deleting 22 genes in the gamma cluster and reported that these genes collectively are involved in both cell survival and synapse formation (Wang et al., 2002; Weiner et al., 2005). Whether the diversity of protocadherin genes plays a role in synaptic specificity remains to be determined.

Another impressive example of alternative splicing in the nervous system involves the DSCAM gene in flies. The Zipursky lab identified DSCAM in flies as a protein that interacts with the adaptor protein Dock. Remarkably, through alternative splicing, the DSCAM gene is predicted to encode as many as 38,016 isoforms (Schmucker et al., 2000). DSCAM isoforms show exquisite binding specificity such that each isoform binds itself but not closely related isoforms (Wojtowicz et al., 2004). Work from the Zipursky, Schmucker, and other groups has shown that DSCAM proteins play a critical role in patterning of axons and dendrites in flies as well as vertebrates (reviewed in Schmucker, 2007; Hattori et al., 2008).

Local Translation: Axon Guidance and Synaptic Function

There is growing evidence that local translation of mRNAs is an important regulatory mechanism in neuronal development and plasticity. A role for local protein synthesis in axon guidance was suggested by Holt and colleagues, who showed that retinal axons lose their responsiveness to netrin-1 and Sema-3a when translation is inhibited (Campbell and Holt, 2001). Recently they showed that β-actin mRNA was localized to growth cones, where it binds to the RNA binding protein Vg1RBP. Netrin-1 stimulation leads to movement of Vg1RBP granules into filopodia and activates the translation regulator elf4E-binding protein to regulate β-actin translation (Leung et al., 2006). In a related study, Flanagan and colleagues reported axonal translation of EphA2 in the spinal cord, suggesting that local translation may be broadly involved in regulating axon guidance (Brittis et al., 2002).

Interest in the role of local translation in synaptic function was sparked by the observation by Steward and Levy that polyribosomes were present in dendrites (Steward and Levy, 1982) and that synaptic stimulation led to a rapid increase in dendritic mRNAs (Steward et al., 1998). Schuman and colleagues reported that the effect of BDNF on synaptic plasticity required local protein synthesis (Kang and Schuman, 1996). More recently they have shown that protein synthesis in dendrites can be regulated by miniature synaptic events (Sutton et al., 2004).

One of the mRNAs that have been shown to be targeted to dendrites is zCaMKII, a kinase implicated in synaptic plasticity. Richter and colleagues reported that CPEB, a protein that binds to the polyadenylation tail of mRNAs, binds to the zCaMKII mRNA and regulates zCaMKII translation (Wu et al., 1998). Kandel and colleagues have reported that CPEB is required for local protein synthesis and synaptic plasticity in Aplysia (Si et al., 2003).

Another gene involved in regulating protein synthesis in dendrites is Fmr1, the gene mutated in Fragile X syndrome (Bagni and Greenough, 2005). Mutations in Fmr1 lead to defects in spine morphogenesis, and Bear and colleagues have reported that synaptic plasticity mediated by metabotropic glutamate receptors depends on the Fmr1 gene (Bear et al., 2004).

MicroRNAs and Synapse Morphology

One of the most exciting recent discoveries regarding control of mRNAs is that microRNAs exert a major influence on mRNA abundance (reviewed in Ruvkun et al., 2004; Lee et al., 2004; Klein et al., 2005). It now appears that much of the genome is transcribed, and that many of the noncoding RNAs represent microRNAs that are processed to generate 20–30 nucleotide long fragments that can recognize and degrade endogenous mRNAs. Investigation of microRNAs in the nervous system is just beginning, and there have already been some exciting advances. Impey and colleagues reported that the CREB-regulated microRNA miR132 can affect neuronal morphogenesis (Vo et al., 2005), and Klein and colleagues reported that the same microRNA can regulate MeCP2 expression (Klein et al., 2007). Schratt and colleagues have reported that miR134 can influence spine morphogenesis (Schratt et al., 2006). These findings show that neuronal activity can influence the abundance of specific mRNAs by regulating microRNA expression. It will be of great interest to identify the microRNAs that are expressed in different cell populations, determine their targets, and explore how microRNA regulation might contribute to neuronal development and function.

Conclusions

Advances in the molecular biology of gene regulation over the past 20 years have driven investigation of these mechanisms in the nervous system. Although we have focused on extracellular control of gene expression, it is important to note that an equally important area of gene investigation in the past two decades has been developmental regulation of gene expression and its role in cell fate specification. This is perhaps best illustrated in the developing spinal cord, where Jessell, Pfaff, and colleagues have shown that the specification of these cell types is regulated by gradients of extracellular signals, and subtypes of spinal neurons are uniquely defined by combination of transcription factors (reviewed in Tanabe and Jessell, 1996; Dessaud et al., 2008). The mechanism by which morphogen gradients regulate expression of specific sets of transcription factors is an area of active investigation. It is important to recognize that in many cases where there is an association between a gene or protein and neuronal response, our understanding of how the protein affects the response is still quite limited. The problem is more tractable in instances where the cellular response can be tightly linked to a molecular change but is difficult to address when the outcome is complex, as in the case of memory retention.

One of the major challenges in understanding the role of gene regulatory mechanisms in adaptive responses in vivo has been a lack of methods to achieve spatially and temporally controlled inactivation of the gene or protein being studied. For example, the lack of precise spatial and temporal control has made it difficult to assess the role of genes such as CREB or BDNF in learning and memory. Thus it is not yet clear whether defects associated with loss of these genes reflects an ongoing requirement for the function of the gene or whether they are required during a critical period of memory consolidation. Similarly, lack of effective ways to inactivate specific RNAs in restricted axonal and dendritic compartments has made it difficult to causally relate local...
translational events with cellular outcomes. Resolution of these questions will require the development of molecular and genetic approaches to target molecular events with greater precision.

The rapid progress in identification of mechanisms that control the production and targeting of mRNAs and proteins, together with the development of tools to manipulate genes and proteins with spatial and temporal precision, should facilitate efforts to understand the molecular basis of neural development and plasticity. Looking ahead, we expect that some of the most important advances in identifying signaling networks that regulate gene expression over the next decade will come from studies in systems biology. The sequencing of the human and mouse genomes ushered in a new era in cell and molecular biology, and the traditional approach of linking individual genes to specific phenomena may well be on its way out. Increasingly technological advances are providing a much more comprehensive view into the mRNAs that are present in specific cell types and cell compartments, gene networks that are activated by extracellular signals, and the proteomes of cells and organelles. The tools to analyze such data sets are rapidly being developed, and the emerging views of gene and protein function will likely redefine our understanding of the molecular basis of neuronal function.

ACKNOWLEDGMENTS

We would like to thank Larry Squire, Marc Montminy, Michael Greenberg, and Massimo Scanziani for comments.

REFERENCES

Alarcon, J.M., Maileret, G., Touzani, K., Vronskaya, S., Ishii, S., Kandel, E.R., and Barco, A. (2004). Chromatin acetylation, memory, and LTP are impaired in a new era in cell and molecular biology, and the traditional approach of linking individual genes to specific phenomena may well be on its way out. Increasingly technological advances are providing a much more comprehensive view into the mRNAs that are present in specific cell types and cell compartments, gene networks that are activated by extracellular signals, and the proteomes of cells and organelles. The tools to analyze such data sets are rapidly being developed, and the emerging views of gene and protein function will likely redefine our understanding of the molecular basis of neuronal function.

ACKNOWLEDGMENTS

We would like to thank Larry Squire, Marc Montminy, Michael Greenberg, and Massimo Scanziani for comments.

REFERENCES

